Solve for x_9
x_{9}=-\frac{20\sqrt{x}\left(\sqrt{x}+20\right)}{x-400}
x\neq 400\text{ and }x>0
Solve for x
x=400\times \left(\frac{x_{9}}{x_{9}+20}\right)^{2}
x_{9}<-20\text{ or }x_{9}>0
Graph
Share
Copied to clipboard
\frac{1}{-x_{9}}=\frac{1}{20}-\frac{1}{\sqrt{x}}
Subtract \frac{1}{\sqrt{x}} from both sides.
-20=20x_{9}\times \frac{1}{20}-20x_{9}x^{-\frac{1}{2}}
Variable x_{9} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 20x_{9}, the least common multiple of -x_{9},20.
-20=x_{9}-20x_{9}x^{-\frac{1}{2}}
Multiply 20 and \frac{1}{20} to get 1.
x_{9}-20x_{9}x^{-\frac{1}{2}}=-20
Swap sides so that all variable terms are on the left hand side.
\left(1-20x^{-\frac{1}{2}}\right)x_{9}=-20
Combine all terms containing x_{9}.
\left(1-\frac{20}{\sqrt{x}}\right)x_{9}=-20
The equation is in standard form.
\frac{\left(1-\frac{20}{\sqrt{x}}\right)x_{9}}{1-\frac{20}{\sqrt{x}}}=-\frac{20}{1-\frac{20}{\sqrt{x}}}
Divide both sides by 1-20x^{-\frac{1}{2}}.
x_{9}=-\frac{20}{1-\frac{20}{\sqrt{x}}}
Dividing by 1-20x^{-\frac{1}{2}} undoes the multiplication by 1-20x^{-\frac{1}{2}}.
x_{9}=-\frac{20\sqrt{x}}{\sqrt{x}-20}
Divide -20 by 1-20x^{-\frac{1}{2}}.
x_{9}=-\frac{20\sqrt{x}}{\sqrt{x}-20}\text{, }x_{9}\neq 0
Variable x_{9} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}