Skip to main content
Solve for x_9
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{-x_{9}}=\frac{1}{20}-\frac{1}{\sqrt{x}}
Subtract \frac{1}{\sqrt{x}} from both sides.
-20=20x_{9}\times \frac{1}{20}-20x_{9}x^{-\frac{1}{2}}
Variable x_{9} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 20x_{9}, the least common multiple of -x_{9},20.
-20=x_{9}-20x_{9}x^{-\frac{1}{2}}
Multiply 20 and \frac{1}{20} to get 1.
x_{9}-20x_{9}x^{-\frac{1}{2}}=-20
Swap sides so that all variable terms are on the left hand side.
\left(1-20x^{-\frac{1}{2}}\right)x_{9}=-20
Combine all terms containing x_{9}.
\left(1-\frac{20}{\sqrt{x}}\right)x_{9}=-20
The equation is in standard form.
\frac{\left(1-\frac{20}{\sqrt{x}}\right)x_{9}}{1-\frac{20}{\sqrt{x}}}=-\frac{20}{1-\frac{20}{\sqrt{x}}}
Divide both sides by 1-20x^{-\frac{1}{2}}.
x_{9}=-\frac{20}{1-\frac{20}{\sqrt{x}}}
Dividing by 1-20x^{-\frac{1}{2}} undoes the multiplication by 1-20x^{-\frac{1}{2}}.
x_{9}=-\frac{20\sqrt{x}}{\sqrt{x}-20}
Divide -20 by 1-20x^{-\frac{1}{2}}.
x_{9}=-\frac{20\sqrt{x}}{\sqrt{x}-20}\text{, }x_{9}\neq 0
Variable x_{9} cannot be equal to 0.