Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2\sqrt{2}+1}
Combine \sqrt{2} and 1\sqrt{2} to get 2\sqrt{2}.
\frac{2\sqrt{2}-1}{\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)}
Rationalize the denominator of \frac{1}{2\sqrt{2}+1} by multiplying numerator and denominator by 2\sqrt{2}-1.
\frac{2\sqrt{2}-1}{\left(2\sqrt{2}\right)^{2}-1^{2}}
Consider \left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}-1}{2^{2}\left(\sqrt{2}\right)^{2}-1^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}-1}{4\left(\sqrt{2}\right)^{2}-1^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{2}-1}{4\times 2-1^{2}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}-1}{8-1^{2}}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{2}-1}{8-1}
Calculate 1 to the power of 2 and get 1.
\frac{2\sqrt{2}-1}{7}
Subtract 1 from 8 to get 7.