Evaluate
\frac{1172}{97}\approx 12.082474227
Factor
\frac{2 ^ {2} \cdot 293}{97} = 12\frac{8}{97} = 12.082474226804123
Share
Copied to clipboard
\frac{1}{\frac{153}{3128}+\frac{138}{3128}}+\frac{4}{3}
Least common multiple of 184 and 68 is 3128. Convert \frac{9}{184} and \frac{3}{68} to fractions with denominator 3128.
\frac{1}{\frac{153+138}{3128}}+\frac{4}{3}
Since \frac{153}{3128} and \frac{138}{3128} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{291}{3128}}+\frac{4}{3}
Add 153 and 138 to get 291.
1\times \frac{3128}{291}+\frac{4}{3}
Divide 1 by \frac{291}{3128} by multiplying 1 by the reciprocal of \frac{291}{3128}.
\frac{3128}{291}+\frac{4}{3}
Multiply 1 and \frac{3128}{291} to get \frac{3128}{291}.
\frac{3128}{291}+\frac{388}{291}
Least common multiple of 291 and 3 is 291. Convert \frac{3128}{291} and \frac{4}{3} to fractions with denominator 291.
\frac{3128+388}{291}
Since \frac{3128}{291} and \frac{388}{291} have the same denominator, add them by adding their numerators.
\frac{3516}{291}
Add 3128 and 388 to get 3516.
\frac{1172}{97}
Reduce the fraction \frac{3516}{291} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}