Evaluate
\frac{1800}{101}\approx 17.821782178
Factor
\frac{2 ^ {3} \cdot 3 ^ {2} \cdot 5 ^ {2}}{101} = 17\frac{83}{101} = 17.821782178217823
Share
Copied to clipboard
\frac{1}{\frac{6}{300}+\frac{5}{300}+\frac{1}{90}+\frac{1}{120}}
Least common multiple of 50 and 60 is 300. Convert \frac{1}{50} and \frac{1}{60} to fractions with denominator 300.
\frac{1}{\frac{6+5}{300}+\frac{1}{90}+\frac{1}{120}}
Since \frac{6}{300} and \frac{5}{300} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{11}{300}+\frac{1}{90}+\frac{1}{120}}
Add 6 and 5 to get 11.
\frac{1}{\frac{33}{900}+\frac{10}{900}+\frac{1}{120}}
Least common multiple of 300 and 90 is 900. Convert \frac{11}{300} and \frac{1}{90} to fractions with denominator 900.
\frac{1}{\frac{33+10}{900}+\frac{1}{120}}
Since \frac{33}{900} and \frac{10}{900} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{43}{900}+\frac{1}{120}}
Add 33 and 10 to get 43.
\frac{1}{\frac{86}{1800}+\frac{15}{1800}}
Least common multiple of 900 and 120 is 1800. Convert \frac{43}{900} and \frac{1}{120} to fractions with denominator 1800.
\frac{1}{\frac{86+15}{1800}}
Since \frac{86}{1800} and \frac{15}{1800} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{101}{1800}}
Add 86 and 15 to get 101.
1\times \frac{1800}{101}
Divide 1 by \frac{101}{1800} by multiplying 1 by the reciprocal of \frac{101}{1800}.
\frac{1800}{101}
Multiply 1 and \frac{1800}{101} to get \frac{1800}{101}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}