Evaluate
-\frac{2458\sqrt{17552335}}{763145}\approx -13.494048445
Share
Copied to clipboard
\frac{-0.02458-0}{\sqrt{\frac{0.00436^{2}}{23}+\frac{0.00757^{2}}{23}}}
Subtract 0.81391 from 0.78933 to get -0.02458.
\frac{-0.02458}{\sqrt{\frac{0.00436^{2}}{23}+\frac{0.00757^{2}}{23}}}
Subtract 0 from -0.02458 to get -0.02458.
\frac{-0.02458}{\sqrt{\frac{0.0000190096}{23}+\frac{0.00757^{2}}{23}}}
Calculate 0.00436 to the power of 2 and get 0.0000190096.
\frac{-0.02458}{\sqrt{\frac{190096}{230000000000}+\frac{0.00757^{2}}{23}}}
Expand \frac{0.0000190096}{23} by multiplying both numerator and the denominator by 10000000000.
\frac{-0.02458}{\sqrt{\frac{11881}{14375000000}+\frac{0.00757^{2}}{23}}}
Reduce the fraction \frac{190096}{230000000000} to lowest terms by extracting and canceling out 16.
\frac{-0.02458}{\sqrt{\frac{11881}{14375000000}+\frac{0.0000573049}{23}}}
Calculate 0.00757 to the power of 2 and get 0.0000573049.
\frac{-0.02458}{\sqrt{\frac{11881}{14375000000}+\frac{573049}{230000000000}}}
Expand \frac{0.0000573049}{23} by multiplying both numerator and the denominator by 10000000000.
\frac{-0.02458}{\sqrt{\frac{190096}{230000000000}+\frac{573049}{230000000000}}}
Least common multiple of 14375000000 and 230000000000 is 230000000000. Convert \frac{11881}{14375000000} and \frac{573049}{230000000000} to fractions with denominator 230000000000.
\frac{-0.02458}{\sqrt{\frac{190096+573049}{230000000000}}}
Since \frac{190096}{230000000000} and \frac{573049}{230000000000} have the same denominator, add them by adding their numerators.
\frac{-0.02458}{\sqrt{\frac{763145}{230000000000}}}
Add 190096 and 573049 to get 763145.
\frac{-0.02458}{\sqrt{\frac{152629}{46000000000}}}
Reduce the fraction \frac{763145}{230000000000} to lowest terms by extracting and canceling out 5.
\frac{-0.02458}{\frac{\sqrt{152629}}{\sqrt{46000000000}}}
Rewrite the square root of the division \sqrt{\frac{152629}{46000000000}} as the division of square roots \frac{\sqrt{152629}}{\sqrt{46000000000}}.
\frac{-0.02458}{\frac{\sqrt{152629}}{20000\sqrt{115}}}
Factor 46000000000=20000^{2}\times 115. Rewrite the square root of the product \sqrt{20000^{2}\times 115} as the product of square roots \sqrt{20000^{2}}\sqrt{115}. Take the square root of 20000^{2}.
\frac{-0.02458}{\frac{\sqrt{152629}\sqrt{115}}{20000\left(\sqrt{115}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{152629}}{20000\sqrt{115}} by multiplying numerator and denominator by \sqrt{115}.
\frac{-0.02458}{\frac{\sqrt{152629}\sqrt{115}}{20000\times 115}}
The square of \sqrt{115} is 115.
\frac{-0.02458}{\frac{\sqrt{17552335}}{20000\times 115}}
To multiply \sqrt{152629} and \sqrt{115}, multiply the numbers under the square root.
\frac{-0.02458}{\frac{\sqrt{17552335}}{2300000}}
Multiply 20000 and 115 to get 2300000.
\frac{-0.02458\times 2300000}{\sqrt{17552335}}
Divide -0.02458 by \frac{\sqrt{17552335}}{2300000} by multiplying -0.02458 by the reciprocal of \frac{\sqrt{17552335}}{2300000}.
\frac{-0.02458\times 2300000\sqrt{17552335}}{\left(\sqrt{17552335}\right)^{2}}
Rationalize the denominator of \frac{-0.02458\times 2300000}{\sqrt{17552335}} by multiplying numerator and denominator by \sqrt{17552335}.
\frac{-0.02458\times 2300000\sqrt{17552335}}{17552335}
The square of \sqrt{17552335} is 17552335.
\frac{-56534\sqrt{17552335}}{17552335}
Multiply -0.02458 and 2300000 to get -56534.
-\frac{2458}{763145}\sqrt{17552335}
Divide -56534\sqrt{17552335} by 17552335 to get -\frac{2458}{763145}\sqrt{17552335}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}