Evaluate
-\frac{5}{3}\approx -1.666666667
Factor
-\frac{5}{3} = -1\frac{2}{3} = -1.6666666666666667
Share
Copied to clipboard
\frac{0.5\left(-\frac{4}{3}\right)-4}{2.4\times \frac{-4}{3}+6}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{\frac{1}{2}\left(-\frac{4}{3}\right)-4}{2.4\times \frac{-4}{3}+6}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{1\left(-4\right)}{2\times 3}-4}{2.4\times \frac{-4}{3}+6}
Multiply \frac{1}{2} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-4}{6}-4}{2.4\times \frac{-4}{3}+6}
Do the multiplications in the fraction \frac{1\left(-4\right)}{2\times 3}.
\frac{-\frac{2}{3}-4}{2.4\times \frac{-4}{3}+6}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
\frac{-\frac{2}{3}-\frac{12}{3}}{2.4\times \frac{-4}{3}+6}
Convert 4 to fraction \frac{12}{3}.
\frac{\frac{-2-12}{3}}{2.4\times \frac{-4}{3}+6}
Since -\frac{2}{3} and \frac{12}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{14}{3}}{2.4\times \frac{-4}{3}+6}
Subtract 12 from -2 to get -14.
\frac{-\frac{14}{3}}{2.4\left(-\frac{4}{3}\right)+6}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{-\frac{14}{3}}{\frac{12}{5}\left(-\frac{4}{3}\right)+6}
Convert decimal number 2.4 to fraction \frac{24}{10}. Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{-\frac{14}{3}}{\frac{12\left(-4\right)}{5\times 3}+6}
Multiply \frac{12}{5} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{14}{3}}{\frac{-48}{15}+6}
Do the multiplications in the fraction \frac{12\left(-4\right)}{5\times 3}.
\frac{-\frac{14}{3}}{-\frac{16}{5}+6}
Reduce the fraction \frac{-48}{15} to lowest terms by extracting and canceling out 3.
\frac{-\frac{14}{3}}{-\frac{16}{5}+\frac{30}{5}}
Convert 6 to fraction \frac{30}{5}.
\frac{-\frac{14}{3}}{\frac{-16+30}{5}}
Since -\frac{16}{5} and \frac{30}{5} have the same denominator, add them by adding their numerators.
\frac{-\frac{14}{3}}{\frac{14}{5}}
Add -16 and 30 to get 14.
-\frac{14}{3}\times \frac{5}{14}
Divide -\frac{14}{3} by \frac{14}{5} by multiplying -\frac{14}{3} by the reciprocal of \frac{14}{5}.
\frac{-14\times 5}{3\times 14}
Multiply -\frac{14}{3} times \frac{5}{14} by multiplying numerator times numerator and denominator times denominator.
\frac{-70}{42}
Do the multiplications in the fraction \frac{-14\times 5}{3\times 14}.
-\frac{5}{3}
Reduce the fraction \frac{-70}{42} to lowest terms by extracting and canceling out 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}