Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{29.4\times 2}{\sqrt{3}+0.3}
Multiply 0.3 and 98 to get 29.4.
\frac{58.8}{\sqrt{3}+0.3}
Multiply 29.4 and 2 to get 58.8.
\frac{58.8\left(\sqrt{3}-0.3\right)}{\left(\sqrt{3}+0.3\right)\left(\sqrt{3}-0.3\right)}
Rationalize the denominator of \frac{58.8}{\sqrt{3}+0.3} by multiplying numerator and denominator by \sqrt{3}-0.3.
\frac{58.8\left(\sqrt{3}-0.3\right)}{\left(\sqrt{3}\right)^{2}-0.3^{2}}
Consider \left(\sqrt{3}+0.3\right)\left(\sqrt{3}-0.3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{58.8\left(\sqrt{3}-0.3\right)}{3-0.09}
Square \sqrt{3}. Square 0.3.
\frac{58.8\left(\sqrt{3}-0.3\right)}{2.91}
Subtract 0.09 from 3 to get 2.91.
\frac{1960}{97}\left(\sqrt{3}-0.3\right)
Divide 58.8\left(\sqrt{3}-0.3\right) by 2.91 to get \frac{1960}{97}\left(\sqrt{3}-0.3\right).
\frac{1960}{97}\sqrt{3}-\frac{588}{97}
Use the distributive property to multiply \frac{1960}{97} by \sqrt{3}-0.3.