Evaluate
\frac{1960\sqrt{3}-588}{97}\approx 28.936284359
Share
Copied to clipboard
\frac{29.4\times 2}{\sqrt{3}+0.3}
Multiply 0.3 and 98 to get 29.4.
\frac{58.8}{\sqrt{3}+0.3}
Multiply 29.4 and 2 to get 58.8.
\frac{58.8\left(\sqrt{3}-0.3\right)}{\left(\sqrt{3}+0.3\right)\left(\sqrt{3}-0.3\right)}
Rationalize the denominator of \frac{58.8}{\sqrt{3}+0.3} by multiplying numerator and denominator by \sqrt{3}-0.3.
\frac{58.8\left(\sqrt{3}-0.3\right)}{\left(\sqrt{3}\right)^{2}-0.3^{2}}
Consider \left(\sqrt{3}+0.3\right)\left(\sqrt{3}-0.3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{58.8\left(\sqrt{3}-0.3\right)}{3-0.09}
Square \sqrt{3}. Square 0.3.
\frac{58.8\left(\sqrt{3}-0.3\right)}{2.91}
Subtract 0.09 from 3 to get 2.91.
\frac{1960}{97}\left(\sqrt{3}-0.3\right)
Divide 58.8\left(\sqrt{3}-0.3\right) by 2.91 to get \frac{1960}{97}\left(\sqrt{3}-0.3\right).
\frac{1960}{97}\sqrt{3}-\frac{588}{97}
Use the distributive property to multiply \frac{1960}{97} by \sqrt{3}-0.3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}