Evaluate
\frac{638}{2875}\approx 0.221913043
Factor
\frac{2 \cdot 11 \cdot 29}{23 \cdot 5 ^ {3}} = 0.22191304347826088
Share
Copied to clipboard
\frac{0.018}{1858-1720}\left(1850-1820\right)+0.218
Subtract 0.218 from 0.236 to get 0.018.
\frac{0.018}{138}\left(1850-1820\right)+0.218
Subtract 1720 from 1858 to get 138.
\frac{18}{138000}\left(1850-1820\right)+0.218
Expand \frac{0.018}{138} by multiplying both numerator and the denominator by 1000.
\frac{3}{23000}\left(1850-1820\right)+0.218
Reduce the fraction \frac{18}{138000} to lowest terms by extracting and canceling out 6.
\frac{3}{23000}\times 30+0.218
Subtract 1820 from 1850 to get 30.
\frac{3\times 30}{23000}+0.218
Express \frac{3}{23000}\times 30 as a single fraction.
\frac{90}{23000}+0.218
Multiply 3 and 30 to get 90.
\frac{9}{2300}+0.218
Reduce the fraction \frac{90}{23000} to lowest terms by extracting and canceling out 10.
\frac{9}{2300}+\frac{109}{500}
Convert decimal number 0.218 to fraction \frac{218}{1000}. Reduce the fraction \frac{218}{1000} to lowest terms by extracting and canceling out 2.
\frac{45}{11500}+\frac{2507}{11500}
Least common multiple of 2300 and 500 is 11500. Convert \frac{9}{2300} and \frac{109}{500} to fractions with denominator 11500.
\frac{45+2507}{11500}
Since \frac{45}{11500} and \frac{2507}{11500} have the same denominator, add them by adding their numerators.
\frac{2552}{11500}
Add 45 and 2507 to get 2552.
\frac{638}{2875}
Reduce the fraction \frac{2552}{11500} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}