\frac{ -b+ \sqrt{ b-ac } }{ 2a } \frac{ -b- \sqrt{ { b }^{ } -ac } }{ 2a }
Evaluate
\frac{ac+b^{2}-b}{4a^{2}}
Factor
\frac{ac+b^{2}-b}{4a^{2}}
Quiz
5 problems similar to:
\frac{ -b+ \sqrt{ b-ac } }{ 2a } \frac{ -b- \sqrt{ { b }^{ } -ac } }{ 2a }
Share
Copied to clipboard
\frac{-b+\sqrt{b-ac}}{2a}\times \frac{-b-\sqrt{b-ac}}{2a}
Calculate b to the power of 1 and get b.
\frac{\left(-b+\sqrt{b-ac}\right)\left(-b-\sqrt{b-ac}\right)}{2a\times 2a}
Multiply \frac{-b+\sqrt{b-ac}}{2a} times \frac{-b-\sqrt{b-ac}}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(-b+\sqrt{b-ac}\right)\left(-b-\sqrt{b-ac}\right)}{2a^{2}\times 2}
Multiply a and a to get a^{2}.
\frac{\left(-b\right)^{2}-\left(\sqrt{b-ac}\right)^{2}}{2a^{2}\times 2}
Consider \left(-b+\sqrt{b-ac}\right)\left(-b-\sqrt{b-ac}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{b^{2}-\left(\sqrt{b-ac}\right)^{2}}{2a^{2}\times 2}
Calculate -b to the power of 2 and get b^{2}.
\frac{b^{2}-\left(b-ac\right)}{2a^{2}\times 2}
Calculate \sqrt{b-ac} to the power of 2 and get b-ac.
\frac{b^{2}-\left(b-ac\right)}{4a^{2}}
Multiply 2 and 2 to get 4.
\frac{b^{2}-b+ac}{4a^{2}}
To find the opposite of b-ac, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}