Evaluate
\frac{-7x-35}{4}
Expand
\frac{-7x-35}{4}
Graph
Share
Copied to clipboard
-\frac{7}{4}\left(x-\left(-5\right)\right)
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
-\frac{7}{4}\left(x+5\right)
The opposite of -5 is 5.
-\frac{7}{4}x-\frac{7}{4}\times 5
Use the distributive property to multiply -\frac{7}{4} by x+5.
-\frac{7}{4}x+\frac{-7\times 5}{4}
Express -\frac{7}{4}\times 5 as a single fraction.
-\frac{7}{4}x+\frac{-35}{4}
Multiply -7 and 5 to get -35.
-\frac{7}{4}x-\frac{35}{4}
Fraction \frac{-35}{4} can be rewritten as -\frac{35}{4} by extracting the negative sign.
-\frac{7}{4}\left(x-\left(-5\right)\right)
Fraction \frac{-7}{4} can be rewritten as -\frac{7}{4} by extracting the negative sign.
-\frac{7}{4}\left(x+5\right)
The opposite of -5 is 5.
-\frac{7}{4}x-\frac{7}{4}\times 5
Use the distributive property to multiply -\frac{7}{4} by x+5.
-\frac{7}{4}x+\frac{-7\times 5}{4}
Express -\frac{7}{4}\times 5 as a single fraction.
-\frac{7}{4}x+\frac{-35}{4}
Multiply -7 and 5 to get -35.
-\frac{7}{4}x-\frac{35}{4}
Fraction \frac{-35}{4} can be rewritten as -\frac{35}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}