Evaluate
\frac{30\left(4x+1\right)}{24x+1}
Expand
\frac{30\left(4x+1\right)}{24x+1}
Graph
Share
Copied to clipboard
\frac{-5\left(-6+4\left(-6\left(-3\right)x+5\right)+4\right)}{-7+4-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Add -7 and 4 to get -3.
\frac{-5\left(-6+4\left(18x+5\right)+4\right)}{-7+4-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Multiply -6 and -3 to get 18.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-7+4-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Add -6 and 4 to get -2.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Add -7 and 4 to get -3.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-5\times 3+3\right)}
Add -6 and 9 to get 3.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-15+3\right)}
Multiply -5 and 3 to get -15.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-12\right)}
Add -15 and 3 to get -12.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-\left(-72\left(-x\right)\right)}
Multiply 6 and -12 to get -72.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-72x}
Multiply -72 and -1 to get 72.
\frac{-5\times 2\times 9\left(4x+1\right)}{3\left(-24x-1\right)}
Factor the expressions that are not already factored.
\frac{-5\times 2\times 3\left(4x+1\right)}{-24x-1}
Cancel out 3 in both numerator and denominator.
\frac{-120x-30}{-24x-1}
Expand the expression.
\frac{-5\left(-6+4\left(-6\left(-3\right)x+5\right)+4\right)}{-7+4-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Add -7 and 4 to get -3.
\frac{-5\left(-6+4\left(18x+5\right)+4\right)}{-7+4-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Multiply -6 and -3 to get 18.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-7+4-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Add -6 and 4 to get -2.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-5\left(-6+9\right)+3\right)}
Add -7 and 4 to get -3.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-5\times 3+3\right)}
Add -6 and 9 to get 3.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-15+3\right)}
Multiply -5 and 3 to get -15.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-6\left(-x\right)\left(-12\right)}
Add -15 and 3 to get -12.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-\left(-72\left(-x\right)\right)}
Multiply 6 and -12 to get -72.
\frac{-5\left(-2+4\left(18x+5\right)\right)}{-3-72x}
Multiply -72 and -1 to get 72.
\frac{-5\times 2\times 9\left(4x+1\right)}{3\left(-24x-1\right)}
Factor the expressions that are not already factored.
\frac{-5\times 2\times 3\left(4x+1\right)}{-24x-1}
Cancel out 3 in both numerator and denominator.
\frac{-120x-30}{-24x-1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}