Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x=2x\left(x+4\right)+\left(x+4\right)\times 5
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
-2x=2x^{2}+8x+\left(x+4\right)\times 5
Use the distributive property to multiply 2x by x+4.
-2x=2x^{2}+8x+5x+20
Use the distributive property to multiply x+4 by 5.
-2x=2x^{2}+13x+20
Combine 8x and 5x to get 13x.
-2x-2x^{2}=13x+20
Subtract 2x^{2} from both sides.
-2x-2x^{2}-13x=20
Subtract 13x from both sides.
-15x-2x^{2}=20
Combine -2x and -13x to get -15x.
-15x-2x^{2}-20=0
Subtract 20 from both sides.
-2x^{2}-15x-20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\left(-2\right)\left(-20\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -15 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\left(-2\right)\left(-20\right)}}{2\left(-2\right)}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225+8\left(-20\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-15\right)±\sqrt{225-160}}{2\left(-2\right)}
Multiply 8 times -20.
x=\frac{-\left(-15\right)±\sqrt{65}}{2\left(-2\right)}
Add 225 to -160.
x=\frac{15±\sqrt{65}}{2\left(-2\right)}
The opposite of -15 is 15.
x=\frac{15±\sqrt{65}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{65}+15}{-4}
Now solve the equation x=\frac{15±\sqrt{65}}{-4} when ± is plus. Add 15 to \sqrt{65}.
x=\frac{-\sqrt{65}-15}{4}
Divide 15+\sqrt{65} by -4.
x=\frac{15-\sqrt{65}}{-4}
Now solve the equation x=\frac{15±\sqrt{65}}{-4} when ± is minus. Subtract \sqrt{65} from 15.
x=\frac{\sqrt{65}-15}{4}
Divide 15-\sqrt{65} by -4.
x=\frac{-\sqrt{65}-15}{4} x=\frac{\sqrt{65}-15}{4}
The equation is now solved.
-2x=2x\left(x+4\right)+\left(x+4\right)\times 5
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
-2x=2x^{2}+8x+\left(x+4\right)\times 5
Use the distributive property to multiply 2x by x+4.
-2x=2x^{2}+8x+5x+20
Use the distributive property to multiply x+4 by 5.
-2x=2x^{2}+13x+20
Combine 8x and 5x to get 13x.
-2x-2x^{2}=13x+20
Subtract 2x^{2} from both sides.
-2x-2x^{2}-13x=20
Subtract 13x from both sides.
-15x-2x^{2}=20
Combine -2x and -13x to get -15x.
-2x^{2}-15x=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-15x}{-2}=\frac{20}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{15}{-2}\right)x=\frac{20}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{15}{2}x=\frac{20}{-2}
Divide -15 by -2.
x^{2}+\frac{15}{2}x=-10
Divide 20 by -2.
x^{2}+\frac{15}{2}x+\left(\frac{15}{4}\right)^{2}=-10+\left(\frac{15}{4}\right)^{2}
Divide \frac{15}{2}, the coefficient of the x term, by 2 to get \frac{15}{4}. Then add the square of \frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{15}{2}x+\frac{225}{16}=-10+\frac{225}{16}
Square \frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{15}{2}x+\frac{225}{16}=\frac{65}{16}
Add -10 to \frac{225}{16}.
\left(x+\frac{15}{4}\right)^{2}=\frac{65}{16}
Factor x^{2}+\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{4}\right)^{2}}=\sqrt{\frac{65}{16}}
Take the square root of both sides of the equation.
x+\frac{15}{4}=\frac{\sqrt{65}}{4} x+\frac{15}{4}=-\frac{\sqrt{65}}{4}
Simplify.
x=\frac{\sqrt{65}-15}{4} x=\frac{-\sqrt{65}-15}{4}
Subtract \frac{15}{4} from both sides of the equation.