Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-2-\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{\left(-2+\sqrt{3}\right)\left(-2-\sqrt{3}\right)}+\frac{-2+\sqrt{3}}{-2-\sqrt{3}}
Rationalize the denominator of \frac{-2-\sqrt{3}}{-2+\sqrt{3}} by multiplying numerator and denominator by -2-\sqrt{3}.
\frac{\left(-2-\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{\left(-2\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{-2+\sqrt{3}}{-2-\sqrt{3}}
Consider \left(-2+\sqrt{3}\right)\left(-2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{4-3}+\frac{-2+\sqrt{3}}{-2-\sqrt{3}}
Square -2. Square \sqrt{3}.
\frac{\left(-2-\sqrt{3}\right)\left(-2-\sqrt{3}\right)}{1}+\frac{-2+\sqrt{3}}{-2-\sqrt{3}}
Subtract 3 from 4 to get 1.
\left(-2-\sqrt{3}\right)\left(-2-\sqrt{3}\right)+\frac{-2+\sqrt{3}}{-2-\sqrt{3}}
Anything divided by one gives itself.
\left(-2-\sqrt{3}\right)^{2}+\frac{-2+\sqrt{3}}{-2-\sqrt{3}}
Multiply -2-\sqrt{3} and -2-\sqrt{3} to get \left(-2-\sqrt{3}\right)^{2}.
\left(-2-\sqrt{3}\right)^{2}+\frac{\left(-2+\sqrt{3}\right)\left(-2+\sqrt{3}\right)}{\left(-2-\sqrt{3}\right)\left(-2+\sqrt{3}\right)}
Rationalize the denominator of \frac{-2+\sqrt{3}}{-2-\sqrt{3}} by multiplying numerator and denominator by -2+\sqrt{3}.
\left(-2-\sqrt{3}\right)^{2}+\frac{\left(-2+\sqrt{3}\right)\left(-2+\sqrt{3}\right)}{\left(-2\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(-2-\sqrt{3}\right)\left(-2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-2-\sqrt{3}\right)^{2}+\frac{\left(-2+\sqrt{3}\right)\left(-2+\sqrt{3}\right)}{4-3}
Square -2. Square \sqrt{3}.
\left(-2-\sqrt{3}\right)^{2}+\frac{\left(-2+\sqrt{3}\right)\left(-2+\sqrt{3}\right)}{1}
Subtract 3 from 4 to get 1.
\left(-2-\sqrt{3}\right)^{2}+\left(-2+\sqrt{3}\right)\left(-2+\sqrt{3}\right)
Anything divided by one gives itself.
\left(-2-\sqrt{3}\right)^{2}+\left(-2+\sqrt{3}\right)^{2}
Multiply -2+\sqrt{3} and -2+\sqrt{3} to get \left(-2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(-2+\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3+\left(-2+\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
7+4\sqrt{3}+\left(-2+\sqrt{3}\right)^{2}
Add 4 and 3 to get 7.
7+4\sqrt{3}+4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2+\sqrt{3}\right)^{2}.
7+4\sqrt{3}+4-4\sqrt{3}+3
The square of \sqrt{3} is 3.
7+4\sqrt{3}+7-4\sqrt{3}
Add 4 and 3 to get 7.
14+4\sqrt{3}-4\sqrt{3}
Add 7 and 7 to get 14.
14
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.