Solve for x
x=2-2y
y\neq 0
Solve for y
y=-\frac{x}{2}+1
x\neq 2
Graph
Share
Copied to clipboard
-2+x=-2y
Multiply both sides of the equation by y.
x=-2y+2
Add 2 to both sides.
-2+x=-2y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
-2y=-2+x
Swap sides so that all variable terms are on the left hand side.
-2y=x-2
The equation is in standard form.
\frac{-2y}{-2}=\frac{x-2}{-2}
Divide both sides by -2.
y=\frac{x-2}{-2}
Dividing by -2 undoes the multiplication by -2.
y=-\frac{x}{2}+1
Divide -2+x by -2.
y=-\frac{x}{2}+1\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}