Evaluate
-\frac{6\sqrt{70}}{5}\approx -10.039920318
Share
Copied to clipboard
\frac{-2\sqrt{21}\times 6\sqrt{2}}{\sqrt{60}}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{-12\sqrt{21}\sqrt{2}}{\sqrt{60}}
Multiply -2 and 6 to get -12.
\frac{-12\sqrt{42}}{\sqrt{60}}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
\frac{-12\sqrt{42}}{2\sqrt{15}}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
\frac{-6\sqrt{42}}{\sqrt{15}}
Cancel out 2 in both numerator and denominator.
\frac{-6\sqrt{42}\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{-6\sqrt{42}}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{-6\sqrt{42}\sqrt{15}}{15}
The square of \sqrt{15} is 15.
\frac{-6\sqrt{630}}{15}
To multiply \sqrt{42} and \sqrt{15}, multiply the numbers under the square root.
\frac{-6\times 3\sqrt{70}}{15}
Factor 630=3^{2}\times 70. Rewrite the square root of the product \sqrt{3^{2}\times 70} as the product of square roots \sqrt{3^{2}}\sqrt{70}. Take the square root of 3^{2}.
\frac{-18\sqrt{70}}{15}
Multiply -6 and 3 to get -18.
-\frac{6}{5}\sqrt{70}
Divide -18\sqrt{70} by 15 to get -\frac{6}{5}\sqrt{70}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}