Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\sqrt{3}+b=1
Rationalize the denominator of \frac{-1+\sqrt{3}}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}-\sqrt{3}+b=1
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}-\sqrt{3}+b=1
Square 1. Square \sqrt{3}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}-\sqrt{3}+b=1
Subtract 3 from 1 to get -2.
\frac{-1+\sqrt{3}+\sqrt{3}-\left(\sqrt{3}\right)^{2}}{-2}-\sqrt{3}+b=1
Apply the distributive property by multiplying each term of -1+\sqrt{3} by each term of 1-\sqrt{3}.
\frac{-1+2\sqrt{3}-\left(\sqrt{3}\right)^{2}}{-2}-\sqrt{3}+b=1
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
\frac{-1+2\sqrt{3}-3}{-2}-\sqrt{3}+b=1
The square of \sqrt{3} is 3.
\frac{-4+2\sqrt{3}}{-2}-\sqrt{3}+b=1
Subtract 3 from -1 to get -4.
2-\sqrt{3}-\sqrt{3}+b=1
Divide each term of -4+2\sqrt{3} by -2 to get 2-\sqrt{3}.
2-2\sqrt{3}+b=1
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
-2\sqrt{3}+b=1-2
Subtract 2 from both sides.
-2\sqrt{3}+b=-1
Subtract 2 from 1 to get -1.
b=-1+2\sqrt{3}
Add 2\sqrt{3} to both sides.