Solve for b
b=2\sqrt{3}-1\approx 2.464101615
Quiz
Linear Equation
5 problems similar to:
\frac{ -1+ \sqrt{ 3 } }{ 1+ \sqrt{ 3 } } - \sqrt{ 3 } +b = 1
Share
Copied to clipboard
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\sqrt{3}+b=1
Rationalize the denominator of \frac{-1+\sqrt{3}}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}-\sqrt{3}+b=1
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{1-3}-\sqrt{3}+b=1
Square 1. Square \sqrt{3}.
\frac{\left(-1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}{-2}-\sqrt{3}+b=1
Subtract 3 from 1 to get -2.
\frac{-1+\sqrt{3}+\sqrt{3}-\left(\sqrt{3}\right)^{2}}{-2}-\sqrt{3}+b=1
Apply the distributive property by multiplying each term of -1+\sqrt{3} by each term of 1-\sqrt{3}.
\frac{-1+2\sqrt{3}-\left(\sqrt{3}\right)^{2}}{-2}-\sqrt{3}+b=1
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
\frac{-1+2\sqrt{3}-3}{-2}-\sqrt{3}+b=1
The square of \sqrt{3} is 3.
\frac{-4+2\sqrt{3}}{-2}-\sqrt{3}+b=1
Subtract 3 from -1 to get -4.
2-\sqrt{3}-\sqrt{3}+b=1
Divide each term of -4+2\sqrt{3} by -2 to get 2-\sqrt{3}.
2-2\sqrt{3}+b=1
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
-2\sqrt{3}+b=1-2
Subtract 2 from both sides.
-2\sqrt{3}+b=-1
Subtract 2 from 1 to get -1.
b=-1+2\sqrt{3}
Add 2\sqrt{3} to both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}