Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+1\right)\left(x+2\right)\left(-1\right)+\left(x-1\right)\left(x+2\right)=\left(x^{2}-1\right)\times 2
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x-1,x+1,x+2.
\left(x^{2}+3x+2\right)\left(-1\right)+\left(x-1\right)\left(x+2\right)=\left(x^{2}-1\right)\times 2
Use the distributive property to multiply x+1 by x+2 and combine like terms.
-x^{2}-3x-2+\left(x-1\right)\left(x+2\right)=\left(x^{2}-1\right)\times 2
Use the distributive property to multiply x^{2}+3x+2 by -1.
-x^{2}-3x-2+x^{2}+x-2=\left(x^{2}-1\right)\times 2
Use the distributive property to multiply x-1 by x+2 and combine like terms.
-3x-2+x-2=\left(x^{2}-1\right)\times 2
Combine -x^{2} and x^{2} to get 0.
-2x-2-2=\left(x^{2}-1\right)\times 2
Combine -3x and x to get -2x.
-2x-4=\left(x^{2}-1\right)\times 2
Subtract 2 from -2 to get -4.
-2x-4=2x^{2}-2
Use the distributive property to multiply x^{2}-1 by 2.
-2x-4-2x^{2}=-2
Subtract 2x^{2} from both sides.
-2x-4-2x^{2}+2=0
Add 2 to both sides.
-2x-2-2x^{2}=0
Add -4 and 2 to get -2.
-2x^{2}-2x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-\left(-2\right)±\sqrt{-12}}{2\left(-2\right)}
Add 4 to -16.
x=\frac{-\left(-2\right)±2\sqrt{3}i}{2\left(-2\right)}
Take the square root of -12.
x=\frac{2±2\sqrt{3}i}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{3}i}{-4}
Multiply 2 times -2.
x=\frac{2+2\sqrt{3}i}{-4}
Now solve the equation x=\frac{2±2\sqrt{3}i}{-4} when ± is plus. Add 2 to 2i\sqrt{3}.
x=\frac{-\sqrt{3}i-1}{2}
Divide 2+2i\sqrt{3} by -4.
x=\frac{-2\sqrt{3}i+2}{-4}
Now solve the equation x=\frac{2±2\sqrt{3}i}{-4} when ± is minus. Subtract 2i\sqrt{3} from 2.
x=\frac{-1+\sqrt{3}i}{2}
Divide 2-2i\sqrt{3} by -4.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
The equation is now solved.
\left(x+1\right)\left(x+2\right)\left(-1\right)+\left(x-1\right)\left(x+2\right)=\left(x^{2}-1\right)\times 2
Variable x cannot be equal to any of the values -2,-1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(x+2\right), the least common multiple of x-1,x+1,x+2.
\left(x^{2}+3x+2\right)\left(-1\right)+\left(x-1\right)\left(x+2\right)=\left(x^{2}-1\right)\times 2
Use the distributive property to multiply x+1 by x+2 and combine like terms.
-x^{2}-3x-2+\left(x-1\right)\left(x+2\right)=\left(x^{2}-1\right)\times 2
Use the distributive property to multiply x^{2}+3x+2 by -1.
-x^{2}-3x-2+x^{2}+x-2=\left(x^{2}-1\right)\times 2
Use the distributive property to multiply x-1 by x+2 and combine like terms.
-3x-2+x-2=\left(x^{2}-1\right)\times 2
Combine -x^{2} and x^{2} to get 0.
-2x-2-2=\left(x^{2}-1\right)\times 2
Combine -3x and x to get -2x.
-2x-4=\left(x^{2}-1\right)\times 2
Subtract 2 from -2 to get -4.
-2x-4=2x^{2}-2
Use the distributive property to multiply x^{2}-1 by 2.
-2x-4-2x^{2}=-2
Subtract 2x^{2} from both sides.
-2x-2x^{2}=-2+4
Add 4 to both sides.
-2x-2x^{2}=2
Add -2 and 4 to get 2.
-2x^{2}-2x=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-2x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{2}{-2}\right)x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+x=\frac{2}{-2}
Divide -2 by -2.
x^{2}+x=-1
Divide 2 by -2.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
Add -1 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Simplify.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.