Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, \frac{3}{2} for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{1}{4}\right)\times 4}}{2\left(-\frac{1}{4}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+4}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-\frac{3}{2}±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{4}\right)}
Add \frac{9}{4} to 4.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{25}{4}.
x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=\frac{1}{-\frac{1}{2}}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} when ± is plus. Add -\frac{3}{2} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x=-\frac{4}{-\frac{1}{2}}
Now solve the equation x=\frac{-\frac{3}{2}±\frac{5}{2}}{-\frac{1}{2}} when ± is minus. Subtract \frac{5}{2} from -\frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=8
Divide -4 by -\frac{1}{2} by multiplying -4 by the reciprocal of -\frac{1}{2}.
x=-2 x=8
The equation is now solved.
-\frac{1}{4}x^{2}+\frac{3}{2}x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{4}x^{2}+\frac{3}{2}x+4-4=-4
Subtract 4 from both sides of the equation.
-\frac{1}{4}x^{2}+\frac{3}{2}x=-4
Subtracting 4 from itself leaves 0.
\frac{-\frac{1}{4}x^{2}+\frac{3}{2}x}{-\frac{1}{4}}=-\frac{4}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\frac{\frac{3}{2}}{-\frac{1}{4}}x=-\frac{4}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}-6x=-\frac{4}{-\frac{1}{4}}
Divide \frac{3}{2} by -\frac{1}{4} by multiplying \frac{3}{2} by the reciprocal of -\frac{1}{4}.
x^{2}-6x=16
Divide -4 by -\frac{1}{4} by multiplying -4 by the reciprocal of -\frac{1}{4}.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=16+9
Square -3.
x^{2}-6x+9=25
Add 16 to 9.
\left(x-3\right)^{2}=25
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-3=5 x-3=-5
Simplify.
x=8 x=-2
Add 3 to both sides of the equation.