Evaluate
-\frac{41}{12}\approx -3.416666667
Factor
-\frac{41}{12} = -3\frac{5}{12} = -3.4166666666666665
Share
Copied to clipboard
\frac{-16}{\left(\frac{8}{3}\right)^{2}}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Calculate 2 to the power of 4 and get 16.
\frac{-16}{\frac{64}{9}}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
-16\times \frac{9}{64}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Divide -16 by \frac{64}{9} by multiplying -16 by the reciprocal of \frac{64}{9}.
\frac{-16\times 9}{64}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Express -16\times \frac{9}{64} as a single fraction.
\frac{-144}{64}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Multiply -16 and 9 to get -144.
-\frac{9}{4}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Reduce the fraction \frac{-144}{64} to lowest terms by extracting and canceling out 16.
-\frac{9}{4}+\frac{10+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Multiply 5 and 2 to get 10.
-\frac{9}{4}+\frac{11}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Add 10 and 1 to get 11.
-\frac{9}{4}+\frac{11\left(-1\right)}{2\times 6}-\left(-0.5\right)^{2}
Multiply \frac{11}{2} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
-\frac{9}{4}+\frac{-11}{12}-\left(-0.5\right)^{2}
Do the multiplications in the fraction \frac{11\left(-1\right)}{2\times 6}.
-\frac{9}{4}-\frac{11}{12}-\left(-0.5\right)^{2}
Fraction \frac{-11}{12} can be rewritten as -\frac{11}{12} by extracting the negative sign.
-\frac{27}{12}-\frac{11}{12}-\left(-0.5\right)^{2}
Least common multiple of 4 and 12 is 12. Convert -\frac{9}{4} and \frac{11}{12} to fractions with denominator 12.
\frac{-27-11}{12}-\left(-0.5\right)^{2}
Since -\frac{27}{12} and \frac{11}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-38}{12}-\left(-0.5\right)^{2}
Subtract 11 from -27 to get -38.
-\frac{19}{6}-\left(-0.5\right)^{2}
Reduce the fraction \frac{-38}{12} to lowest terms by extracting and canceling out 2.
-\frac{19}{6}-0.25
Calculate -0.5 to the power of 2 and get 0.25.
-\frac{19}{6}-\frac{1}{4}
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
-\frac{38}{12}-\frac{3}{12}
Least common multiple of 6 and 4 is 12. Convert -\frac{19}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{-38-3}{12}
Since -\frac{38}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{41}{12}
Subtract 3 from -38 to get -41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}