Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-16}{\left(\frac{8}{3}\right)^{2}}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Calculate 2 to the power of 4 and get 16.
\frac{-16}{\frac{64}{9}}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
-16\times \frac{9}{64}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Divide -16 by \frac{64}{9} by multiplying -16 by the reciprocal of \frac{64}{9}.
\frac{-16\times 9}{64}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Express -16\times \frac{9}{64} as a single fraction.
\frac{-144}{64}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Multiply -16 and 9 to get -144.
-\frac{9}{4}+\frac{5\times 2+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Reduce the fraction \frac{-144}{64} to lowest terms by extracting and canceling out 16.
-\frac{9}{4}+\frac{10+1}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Multiply 5 and 2 to get 10.
-\frac{9}{4}+\frac{11}{2}\left(-\frac{1}{6}\right)-\left(-0.5\right)^{2}
Add 10 and 1 to get 11.
-\frac{9}{4}+\frac{11\left(-1\right)}{2\times 6}-\left(-0.5\right)^{2}
Multiply \frac{11}{2} times -\frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
-\frac{9}{4}+\frac{-11}{12}-\left(-0.5\right)^{2}
Do the multiplications in the fraction \frac{11\left(-1\right)}{2\times 6}.
-\frac{9}{4}-\frac{11}{12}-\left(-0.5\right)^{2}
Fraction \frac{-11}{12} can be rewritten as -\frac{11}{12} by extracting the negative sign.
-\frac{27}{12}-\frac{11}{12}-\left(-0.5\right)^{2}
Least common multiple of 4 and 12 is 12. Convert -\frac{9}{4} and \frac{11}{12} to fractions with denominator 12.
\frac{-27-11}{12}-\left(-0.5\right)^{2}
Since -\frac{27}{12} and \frac{11}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-38}{12}-\left(-0.5\right)^{2}
Subtract 11 from -27 to get -38.
-\frac{19}{6}-\left(-0.5\right)^{2}
Reduce the fraction \frac{-38}{12} to lowest terms by extracting and canceling out 2.
-\frac{19}{6}-0.25
Calculate -0.5 to the power of 2 and get 0.25.
-\frac{19}{6}-\frac{1}{4}
Convert decimal number 0.25 to fraction \frac{25}{100}. Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
-\frac{38}{12}-\frac{3}{12}
Least common multiple of 6 and 4 is 12. Convert -\frac{19}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{-38-3}{12}
Since -\frac{38}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{41}{12}
Subtract 3 from -38 to get -41.