Solve for x
x=-\frac{1}{16}=-0.0625
Graph
Share
Copied to clipboard
-\left(\frac{1}{2}\right)^{3}-2=2x-2
Multiply both sides of the equation by 2.
-\frac{1}{8}-2=2x-2
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
-\frac{1}{8}-\frac{16}{8}=2x-2
Convert 2 to fraction \frac{16}{8}.
\frac{-1-16}{8}=2x-2
Since -\frac{1}{8} and \frac{16}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{8}=2x-2
Subtract 16 from -1 to get -17.
2x-2=-\frac{17}{8}
Swap sides so that all variable terms are on the left hand side.
2x=-\frac{17}{8}+2
Add 2 to both sides.
2x=-\frac{17}{8}+\frac{16}{8}
Convert 2 to fraction \frac{16}{8}.
2x=\frac{-17+16}{8}
Since -\frac{17}{8} and \frac{16}{8} have the same denominator, add them by adding their numerators.
2x=-\frac{1}{8}
Add -17 and 16 to get -1.
x=\frac{-\frac{1}{8}}{2}
Divide both sides by 2.
x=\frac{-1}{8\times 2}
Express \frac{-\frac{1}{8}}{2} as a single fraction.
x=\frac{-1}{16}
Multiply 8 and 2 to get 16.
x=-\frac{1}{16}
Fraction \frac{-1}{16} can be rewritten as -\frac{1}{16} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}