Evaluate
4\sqrt{5}-9\approx -0.05572809
Expand
4 \sqrt{5} - 9 = -0.05572809
Share
Copied to clipboard
\frac{-\left(\frac{\sqrt{5}}{2}-\frac{2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{-\left(\frac{\sqrt{5}-2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
Since \frac{\sqrt{5}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To raise \frac{\sqrt{5}-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-1}
To raise \frac{\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Since \frac{\left(\sqrt{5}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
\frac{-\frac{5-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Add 5 and 4 to get 9.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-4}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{2^{2}}}
Subtract 4 from 5 to get 1.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{4}}
Calculate 2 to the power of 2 and get 4.
\left(-\frac{9-4\sqrt{5}}{4}\right)\times 4
Divide -\frac{9-4\sqrt{5}}{4} by \frac{1}{4} by multiplying -\frac{9-4\sqrt{5}}{4} by the reciprocal of \frac{1}{4}.
-\left(9-4\sqrt{5}\right)
Cancel out 4 and 4.
-9+4\sqrt{5}
To find the opposite of 9-4\sqrt{5}, find the opposite of each term.
\frac{-\left(\frac{\sqrt{5}}{2}-\frac{2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{-\left(\frac{\sqrt{5}-2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
Since \frac{\sqrt{5}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To raise \frac{\sqrt{5}-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-1}
To raise \frac{\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Since \frac{\left(\sqrt{5}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
\frac{-\frac{5-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Add 5 and 4 to get 9.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-4}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{2^{2}}}
Subtract 4 from 5 to get 1.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{4}}
Calculate 2 to the power of 2 and get 4.
\left(-\frac{9-4\sqrt{5}}{4}\right)\times 4
Divide -\frac{9-4\sqrt{5}}{4} by \frac{1}{4} by multiplying -\frac{9-4\sqrt{5}}{4} by the reciprocal of \frac{1}{4}.
-\left(9-4\sqrt{5}\right)
Cancel out 4 and 4.
-9+4\sqrt{5}
To find the opposite of 9-4\sqrt{5}, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}