Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{-\left(\frac{\sqrt{5}}{2}-\frac{2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{-\left(\frac{\sqrt{5}-2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
Since \frac{\sqrt{5}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To raise \frac{\sqrt{5}-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-1}
To raise \frac{\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Since \frac{\left(\sqrt{5}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
\frac{-\frac{5-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Add 5 and 4 to get 9.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-4}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{2^{2}}}
Subtract 4 from 5 to get 1.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{4}}
Calculate 2 to the power of 2 and get 4.
\left(-\frac{9-4\sqrt{5}}{4}\right)\times 4
Divide -\frac{9-4\sqrt{5}}{4} by \frac{1}{4} by multiplying -\frac{9-4\sqrt{5}}{4} by the reciprocal of \frac{1}{4}.
-\left(9-4\sqrt{5}\right)
Cancel out 4 and 4.
-9+4\sqrt{5}
To find the opposite of 9-4\sqrt{5}, find the opposite of each term.
\frac{-\left(\frac{\sqrt{5}}{2}-\frac{2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{-\left(\frac{\sqrt{5}-2}{2}\right)^{2}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
Since \frac{\sqrt{5}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\left(\frac{\sqrt{5}}{2}\right)^{2}-1}
To raise \frac{\sqrt{5}-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-1}
To raise \frac{\sqrt{5}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{-\frac{\left(\sqrt{5}-2\right)^{2}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Since \frac{\left(\sqrt{5}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
\frac{-\frac{5-4\sqrt{5}+4}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{2^{2}}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Add 5 and 4 to get 9.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{\left(\sqrt{5}\right)^{2}-2^{2}}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-2^{2}}{2^{2}}}
The square of \sqrt{5} is 5.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{5-4}{2^{2}}}
Calculate 2 to the power of 2 and get 4.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{2^{2}}}
Subtract 4 from 5 to get 1.
\frac{-\frac{9-4\sqrt{5}}{4}}{\frac{1}{4}}
Calculate 2 to the power of 2 and get 4.
\left(-\frac{9-4\sqrt{5}}{4}\right)\times 4
Divide -\frac{9-4\sqrt{5}}{4} by \frac{1}{4} by multiplying -\frac{9-4\sqrt{5}}{4} by the reciprocal of \frac{1}{4}.
-\left(9-4\sqrt{5}\right)
Cancel out 4 and 4.
-9+4\sqrt{5}
To find the opposite of 9-4\sqrt{5}, find the opposite of each term.