Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(y-2x\right)\left(3x-2y\right)}{\left(y-3x\right)\left(2x-y\right)\left(6x^{2}-13xy+6y^{2}\right)}
Express \frac{\frac{\left(y-2x\right)\left(3x-2y\right)}{\left(y-3x\right)\left(2x-y\right)}}{6x^{2}-13xy+6y^{2}} as a single fraction.
\frac{-\left(3x-2y\right)\left(2x-y\right)}{\left(-3x+y\right)\left(2x-y\right)\left(6x^{2}-13xy+6y^{2}\right)}
Extract the negative sign in y-2x.
\frac{-\left(3x-2y\right)}{\left(-3x+y\right)\left(6x^{2}-13xy+6y^{2}\right)}
Cancel out 2x-y in both numerator and denominator.
\frac{-\left(3x-2y\right)}{\left(-3x+y\right)\left(2x-3y\right)\left(3x-2y\right)}
Factor the expressions that are not already factored.
\frac{-1}{\left(-3x+y\right)\left(2x-3y\right)}
Cancel out 3x-2y in both numerator and denominator.
\frac{-1}{-6x^{2}+11xy-3y^{2}}
Expand the expression.
\frac{\left(y-2x\right)\left(3x-2y\right)}{\left(y-3x\right)\left(2x-y\right)\left(6x^{2}-13xy+6y^{2}\right)}
Express \frac{\frac{\left(y-2x\right)\left(3x-2y\right)}{\left(y-3x\right)\left(2x-y\right)}}{6x^{2}-13xy+6y^{2}} as a single fraction.
\frac{-\left(3x-2y\right)\left(2x-y\right)}{\left(-3x+y\right)\left(2x-y\right)\left(6x^{2}-13xy+6y^{2}\right)}
Extract the negative sign in y-2x.
\frac{-\left(3x-2y\right)}{\left(-3x+y\right)\left(6x^{2}-13xy+6y^{2}\right)}
Cancel out 2x-y in both numerator and denominator.
\frac{-\left(3x-2y\right)}{\left(-3x+y\right)\left(2x-3y\right)\left(3x-2y\right)}
Factor the expressions that are not already factored.
\frac{-1}{\left(-3x+y\right)\left(2x-3y\right)}
Cancel out 3x-2y in both numerator and denominator.
\frac{-1}{-6x^{2}+11xy-3y^{2}}
Expand the expression.