Evaluate
\frac{120-29x-69x^{2}-27x^{3}-3x^{4}}{\left(x-5\right)\left(x+3\right)\left(x^{3}+3x^{2}-2x-15\right)}
Expand
\frac{120-29x-69x^{2}-27x^{3}-3x^{4}}{\left(x-5\right)\left(x+3\right)\left(x^{3}+3x^{2}-2x-15\right)}
Graph
Share
Copied to clipboard
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}-\frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)x^{2}-2x-15 and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right). Multiply \frac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)x^{2}-2x-15} times \frac{\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}. Multiply \frac{4\left(x+5\right)}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x+3\right)x^{2}-2x-15}{\left(x+3\right)x^{2}-2x-15}.
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Since \frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} and \frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Do the multiplications in \left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right).
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Combine like terms in x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300.
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{x^{5}+x^{4}-23x^{3}-56x^{2}+60x+225}
Expand \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right).
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}-\frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)x^{2}-2x-15 and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right). Multiply \frac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)x^{2}-2x-15} times \frac{\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}. Multiply \frac{4\left(x+5\right)}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x+3\right)x^{2}-2x-15}{\left(x+3\right)x^{2}-2x-15}.
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Since \frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} and \frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Do the multiplications in \left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right).
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Combine like terms in x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300.
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{x^{5}+x^{4}-23x^{3}-56x^{2}+60x+225}
Expand \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}