Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}-\frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)x^{2}-2x-15 and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right). Multiply \frac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)x^{2}-2x-15} times \frac{\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}. Multiply \frac{4\left(x+5\right)}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x+3\right)x^{2}-2x-15}{\left(x+3\right)x^{2}-2x-15}.
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Since \frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} and \frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Do the multiplications in \left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right).
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Combine like terms in x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300.
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{x^{5}+x^{4}-23x^{3}-56x^{2}+60x+225}
Expand \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right).
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}-\frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)x^{2}-2x-15 and \left(x-5\right)\left(x+3\right) is \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right). Multiply \frac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)x^{2}-2x-15} times \frac{\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}. Multiply \frac{4\left(x+5\right)}{\left(x-5\right)\left(x+3\right)} times \frac{\left(x+3\right)x^{2}-2x-15}{\left(x+3\right)x^{2}-2x-15}.
\frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Since \frac{\left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} and \frac{4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right)}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Do the multiplications in \left(x+3\right)\left(x+4\right)\left(x-5\right)\left(x+3\right)-4\left(x+5\right)\left(\left(x+3\right)x^{2}-2x-15\right).
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{\left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right)}
Combine like terms in x^{4}+2x^{3}-23x^{2}-60x+3x^{3}+6x^{2}-69x-180-4x^{4}-12x^{3}+8x^{2}+60x-20x^{3}-60x^{2}+40x+300.
\frac{-3x^{4}-27x^{3}-69x^{2}-29x+120}{x^{5}+x^{4}-23x^{3}-56x^{2}+60x+225}
Expand \left(x-5\right)\left(x+3\right)\left(\left(x+3\right)x^{2}-2x-15\right).