Evaluate
\frac{60}{13}+\frac{300}{13}i\approx 4.615384615+23.076923077i
Real Part
\frac{60}{13} = 4\frac{8}{13} = 4.615384615384615
Share
Copied to clipboard
\frac{60\times \left(20i\right)-60\times 20i^{2}}{60-40i}
Multiply 60-60i times 20i.
\frac{60\times \left(20i\right)-60\times 20\left(-1\right)}{60-40i}
By definition, i^{2} is -1.
\frac{1200+1200i}{60-40i}
Do the multiplications in 60\times \left(20i\right)-60\times 20\left(-1\right). Reorder the terms.
\frac{\left(1200+1200i\right)\left(60+40i\right)}{\left(60-40i\right)\left(60+40i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 60+40i.
\frac{\left(1200+1200i\right)\left(60+40i\right)}{60^{2}-40^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1200+1200i\right)\left(60+40i\right)}{5200}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1200\times 60+1200\times \left(40i\right)+1200i\times 60+1200\times 40i^{2}}{5200}
Multiply complex numbers 1200+1200i and 60+40i like you multiply binomials.
\frac{1200\times 60+1200\times \left(40i\right)+1200i\times 60+1200\times 40\left(-1\right)}{5200}
By definition, i^{2} is -1.
\frac{72000+48000i+72000i-48000}{5200}
Do the multiplications in 1200\times 60+1200\times \left(40i\right)+1200i\times 60+1200\times 40\left(-1\right).
\frac{72000-48000+\left(48000+72000\right)i}{5200}
Combine the real and imaginary parts in 72000+48000i+72000i-48000.
\frac{24000+120000i}{5200}
Do the additions in 72000-48000+\left(48000+72000\right)i.
\frac{60}{13}+\frac{300}{13}i
Divide 24000+120000i by 5200 to get \frac{60}{13}+\frac{300}{13}i.
Re(\frac{60\times \left(20i\right)-60\times 20i^{2}}{60-40i})
Multiply 60-60i times 20i.
Re(\frac{60\times \left(20i\right)-60\times 20\left(-1\right)}{60-40i})
By definition, i^{2} is -1.
Re(\frac{1200+1200i}{60-40i})
Do the multiplications in 60\times \left(20i\right)-60\times 20\left(-1\right). Reorder the terms.
Re(\frac{\left(1200+1200i\right)\left(60+40i\right)}{\left(60-40i\right)\left(60+40i\right)})
Multiply both numerator and denominator of \frac{1200+1200i}{60-40i} by the complex conjugate of the denominator, 60+40i.
Re(\frac{\left(1200+1200i\right)\left(60+40i\right)}{60^{2}-40^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1200+1200i\right)\left(60+40i\right)}{5200})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1200\times 60+1200\times \left(40i\right)+1200i\times 60+1200\times 40i^{2}}{5200})
Multiply complex numbers 1200+1200i and 60+40i like you multiply binomials.
Re(\frac{1200\times 60+1200\times \left(40i\right)+1200i\times 60+1200\times 40\left(-1\right)}{5200})
By definition, i^{2} is -1.
Re(\frac{72000+48000i+72000i-48000}{5200})
Do the multiplications in 1200\times 60+1200\times \left(40i\right)+1200i\times 60+1200\times 40\left(-1\right).
Re(\frac{72000-48000+\left(48000+72000\right)i}{5200})
Combine the real and imaginary parts in 72000+48000i+72000i-48000.
Re(\frac{24000+120000i}{5200})
Do the additions in 72000-48000+\left(48000+72000\right)i.
Re(\frac{60}{13}+\frac{300}{13}i)
Divide 24000+120000i by 5200 to get \frac{60}{13}+\frac{300}{13}i.
\frac{60}{13}
The real part of \frac{60}{13}+\frac{300}{13}i is \frac{60}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}