Evaluate
40
Real Part
40
Share
Copied to clipboard
\frac{20\times \left(-40i\right)+20\left(-40\right)i^{2}}{20-20i}
Multiply 20+20i times -40i.
\frac{20\times \left(-40i\right)+20\left(-40\right)\left(-1\right)}{20-20i}
By definition, i^{2} is -1.
\frac{800-800i}{20-20i}
Do the multiplications in 20\times \left(-40i\right)+20\left(-40\right)\left(-1\right). Reorder the terms.
\frac{\left(800-800i\right)\left(20+20i\right)}{\left(20-20i\right)\left(20+20i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 20+20i.
\frac{\left(800-800i\right)\left(20+20i\right)}{20^{2}-20^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(800-800i\right)\left(20+20i\right)}{800}
By definition, i^{2} is -1. Calculate the denominator.
\frac{800\times 20+800\times \left(20i\right)-800i\times 20-800\times 20i^{2}}{800}
Multiply complex numbers 800-800i and 20+20i like you multiply binomials.
\frac{800\times 20+800\times \left(20i\right)-800i\times 20-800\times 20\left(-1\right)}{800}
By definition, i^{2} is -1.
\frac{16000+16000i-16000i+16000}{800}
Do the multiplications in 800\times 20+800\times \left(20i\right)-800i\times 20-800\times 20\left(-1\right).
\frac{16000+16000+\left(16000-16000\right)i}{800}
Combine the real and imaginary parts in 16000+16000i-16000i+16000.
\frac{32000}{800}
Do the additions in 16000+16000+\left(16000-16000\right)i.
40
Divide 32000 by 800 to get 40.
Re(\frac{20\times \left(-40i\right)+20\left(-40\right)i^{2}}{20-20i})
Multiply 20+20i times -40i.
Re(\frac{20\times \left(-40i\right)+20\left(-40\right)\left(-1\right)}{20-20i})
By definition, i^{2} is -1.
Re(\frac{800-800i}{20-20i})
Do the multiplications in 20\times \left(-40i\right)+20\left(-40\right)\left(-1\right). Reorder the terms.
Re(\frac{\left(800-800i\right)\left(20+20i\right)}{\left(20-20i\right)\left(20+20i\right)})
Multiply both numerator and denominator of \frac{800-800i}{20-20i} by the complex conjugate of the denominator, 20+20i.
Re(\frac{\left(800-800i\right)\left(20+20i\right)}{20^{2}-20^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(800-800i\right)\left(20+20i\right)}{800})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{800\times 20+800\times \left(20i\right)-800i\times 20-800\times 20i^{2}}{800})
Multiply complex numbers 800-800i and 20+20i like you multiply binomials.
Re(\frac{800\times 20+800\times \left(20i\right)-800i\times 20-800\times 20\left(-1\right)}{800})
By definition, i^{2} is -1.
Re(\frac{16000+16000i-16000i+16000}{800})
Do the multiplications in 800\times 20+800\times \left(20i\right)-800i\times 20-800\times 20\left(-1\right).
Re(\frac{16000+16000+\left(16000-16000\right)i}{800})
Combine the real and imaginary parts in 16000+16000i-16000i+16000.
Re(\frac{32000}{800})
Do the additions in 16000+16000+\left(16000-16000\right)i.
Re(40)
Divide 32000 by 800 to get 40.
40
The real part of 40 is 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}