Evaluate
\frac{y^{2}-2}{y-1}
Expand
\frac{y^{2}-2}{y-1}
Graph
Share
Copied to clipboard
\frac{y^{2}+2y+1-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Factor y^{2}-2y+1.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}}-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2}+2y+1 times \frac{\left(y-1\right)^{2}}{\left(y-1\right)^{2}}.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Since \frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}} and \frac{1}{\left(y-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Do the multiplications in \left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Combine like terms in y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+\frac{y\left(y-1\right)}{y-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y-1}{y-1}.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y\left(y-1\right)}{y-1}}
Since \frac{y}{y-1} and \frac{y\left(y-1\right)}{y-1} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y^{2}-y}{y-1}}
Do the multiplications in y+y\left(y-1\right).
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y^{2}}{y-1}}
Combine like terms in y+y^{2}-y.
\frac{\left(y^{4}-2y^{2}\right)\left(y-1\right)}{\left(y-1\right)^{2}y^{2}}
Divide \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by \frac{y^{2}}{y-1} by multiplying \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by the reciprocal of \frac{y^{2}}{y-1}.
\frac{y^{4}-2y^{2}}{\left(y-1\right)y^{2}}
Cancel out y-1 in both numerator and denominator.
\frac{y^{2}\left(y^{2}-2\right)}{\left(y-1\right)y^{2}}
Factor the expressions that are not already factored.
\frac{y^{2}-2}{y-1}
Cancel out y^{2} in both numerator and denominator.
\frac{y^{2}+2y+1-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Factor y^{2}-2y+1.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}}-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2}+2y+1 times \frac{\left(y-1\right)^{2}}{\left(y-1\right)^{2}}.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Since \frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}} and \frac{1}{\left(y-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Do the multiplications in \left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Combine like terms in y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+\frac{y\left(y-1\right)}{y-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y-1}{y-1}.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y\left(y-1\right)}{y-1}}
Since \frac{y}{y-1} and \frac{y\left(y-1\right)}{y-1} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y^{2}-y}{y-1}}
Do the multiplications in y+y\left(y-1\right).
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y^{2}}{y-1}}
Combine like terms in y+y^{2}-y.
\frac{\left(y^{4}-2y^{2}\right)\left(y-1\right)}{\left(y-1\right)^{2}y^{2}}
Divide \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by \frac{y^{2}}{y-1} by multiplying \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by the reciprocal of \frac{y^{2}}{y-1}.
\frac{y^{4}-2y^{2}}{\left(y-1\right)y^{2}}
Cancel out y-1 in both numerator and denominator.
\frac{y^{2}\left(y^{2}-2\right)}{\left(y-1\right)y^{2}}
Factor the expressions that are not already factored.
\frac{y^{2}-2}{y-1}
Cancel out y^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}