Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y^{2}+2y+1-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Factor y^{2}-2y+1.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}}-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2}+2y+1 times \frac{\left(y-1\right)^{2}}{\left(y-1\right)^{2}}.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Since \frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}} and \frac{1}{\left(y-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Do the multiplications in \left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Combine like terms in y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+\frac{y\left(y-1\right)}{y-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y-1}{y-1}.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y\left(y-1\right)}{y-1}}
Since \frac{y}{y-1} and \frac{y\left(y-1\right)}{y-1} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y^{2}-y}{y-1}}
Do the multiplications in y+y\left(y-1\right).
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y^{2}}{y-1}}
Combine like terms in y+y^{2}-y.
\frac{\left(y^{4}-2y^{2}\right)\left(y-1\right)}{\left(y-1\right)^{2}y^{2}}
Divide \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by \frac{y^{2}}{y-1} by multiplying \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by the reciprocal of \frac{y^{2}}{y-1}.
\frac{y^{4}-2y^{2}}{\left(y-1\right)y^{2}}
Cancel out y-1 in both numerator and denominator.
\frac{y^{2}\left(y^{2}-2\right)}{\left(y-1\right)y^{2}}
Factor the expressions that are not already factored.
\frac{y^{2}-2}{y-1}
Cancel out y^{2} in both numerator and denominator.
\frac{y^{2}+2y+1-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Factor y^{2}-2y+1.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}}-\frac{1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2}+2y+1 times \frac{\left(y-1\right)^{2}}{\left(y-1\right)^{2}}.
\frac{\frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Since \frac{\left(y^{2}+2y+1\right)\left(y-1\right)^{2}}{\left(y-1\right)^{2}} and \frac{1}{\left(y-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Do the multiplications in \left(y^{2}+2y+1\right)\left(y-1\right)^{2}-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+y}
Combine like terms in y^{4}-2y^{3}+y^{2}+2y^{3}-4y^{2}+2y+y^{2}-2y+1-1.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y}{y-1}+\frac{y\left(y-1\right)}{y-1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y-1}{y-1}.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y\left(y-1\right)}{y-1}}
Since \frac{y}{y-1} and \frac{y\left(y-1\right)}{y-1} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y+y^{2}-y}{y-1}}
Do the multiplications in y+y\left(y-1\right).
\frac{\frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}}}{\frac{y^{2}}{y-1}}
Combine like terms in y+y^{2}-y.
\frac{\left(y^{4}-2y^{2}\right)\left(y-1\right)}{\left(y-1\right)^{2}y^{2}}
Divide \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by \frac{y^{2}}{y-1} by multiplying \frac{y^{4}-2y^{2}}{\left(y-1\right)^{2}} by the reciprocal of \frac{y^{2}}{y-1}.
\frac{y^{4}-2y^{2}}{\left(y-1\right)y^{2}}
Cancel out y-1 in both numerator and denominator.
\frac{y^{2}\left(y^{2}-2\right)}{\left(y-1\right)y^{2}}
Factor the expressions that are not already factored.
\frac{y^{2}-2}{y-1}
Cancel out y^{2} in both numerator and denominator.