Solve for x
x=\frac{\sqrt{2}}{2}\approx 0.707106781
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac{ { x }^{ 4 } + { x }^{ 2 } }{ 1- { x }^{ 4 } } = 1
Share
Copied to clipboard
x^{4}+x^{2}=\left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right)\left(-x^{2}-1\right).
x^{4}+x^{2}=\left(x^{2}-1\right)\left(-x^{2}-1\right)
Use the distributive property to multiply x-1 by x+1 and combine like terms.
x^{4}+x^{2}=-x^{4}+1
Use the distributive property to multiply x^{2}-1 by -x^{2}-1 and combine like terms.
x^{4}+x^{2}+x^{4}=1
Add x^{4} to both sides.
2x^{4}+x^{2}=1
Combine x^{4} and x^{4} to get 2x^{4}.
2x^{4}+x^{2}-1=0
Subtract 1 from both sides.
2t^{2}+t-1=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, 1 for b, and -1 for c in the quadratic formula.
t=\frac{-1±3}{4}
Do the calculations.
t=\frac{1}{2} t=-1
Solve the equation t=\frac{-1±3}{4} when ± is plus and when ± is minus.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}