Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{xy+xy}{\left(x+y\right)\left(x-y\right)}
Combine x^{2} and -x^{2} to get 0.
\frac{2xy}{\left(x+y\right)\left(x-y\right)}
Combine xy and xy to get 2xy.
\frac{2xy}{x^{2}-y^{2}}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{xy+xy}{\left(x+y\right)\left(x-y\right)}
Combine x^{2} and -x^{2} to get 0.
\frac{2xy}{\left(x+y\right)\left(x-y\right)}
Combine xy and xy to get 2xy.
\frac{2xy}{x^{2}-y^{2}}
Consider \left(x+y\right)\left(x-y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.