Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{x}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+1 is x\left(x+1\right). Multiply \frac{x+1}{x} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x}{x}.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x+1\right)\left(x+1\right)+x}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
Since \frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} and \frac{x}{x\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+x+x+1+x}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
Do the multiplications in \left(x+1\right)\left(x+1\right)+x.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+3x+1}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
Combine like terms in x^{2}+x+x+1+x.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+3x+1}{x\left(x+1\right)}+\frac{2-x^{2}}{x\left(x-1\right)}}
Factor x^{2}-x.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x^{2}+3x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}+\frac{\left(2-x^{2}\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and x\left(x-1\right) is x\left(x-1\right)\left(x+1\right). Multiply \frac{x^{2}+3x+1}{x\left(x+1\right)} times \frac{x-1}{x-1}. Multiply \frac{2-x^{2}}{x\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x^{2}+3x+1\right)\left(x-1\right)+\left(2-x^{2}\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}}
Since \frac{\left(x^{2}+3x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)} and \frac{\left(2-x^{2}\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{3}-x^{2}+3x^{2}-3x+x-1+2x+2-x^{3}-x^{2}}{x\left(x-1\right)\left(x+1\right)}}
Do the multiplications in \left(x^{2}+3x+1\right)\left(x-1\right)+\left(2-x^{2}\right)\left(x+1\right).
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+1}{x\left(x-1\right)\left(x+1\right)}}
Combine like terms in x^{3}-x^{2}+3x^{2}-3x+x-1+2x+2-x^{3}-x^{2}.
\frac{\left(x^{2}+x\right)x\left(x-1\right)\left(x+1\right)}{\left(x^{2}-2x+1\right)\left(x^{2}+1\right)}
Divide \frac{x^{2}+x}{x^{2}-2x+1} by \frac{x^{2}+1}{x\left(x-1\right)\left(x+1\right)} by multiplying \frac{x^{2}+x}{x^{2}-2x+1} by the reciprocal of \frac{x^{2}+1}{x\left(x-1\right)\left(x+1\right)}.
\frac{\left(x-1\right)x^{2}\left(x+1\right)^{2}}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{x^{2}\left(x+1\right)^{2}}{\left(x-1\right)\left(x^{2}+1\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x^{4}+2x^{3}+x^{2}}{x^{3}-x^{2}+x-1}
Expand the expression.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{x}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+1 is x\left(x+1\right). Multiply \frac{x+1}{x} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x}{x}.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x+1\right)\left(x+1\right)+x}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
Since \frac{\left(x+1\right)\left(x+1\right)}{x\left(x+1\right)} and \frac{x}{x\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+x+x+1+x}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
Do the multiplications in \left(x+1\right)\left(x+1\right)+x.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+3x+1}{x\left(x+1\right)}+\frac{2-x^{2}}{x^{2}-x}}
Combine like terms in x^{2}+x+x+1+x.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+3x+1}{x\left(x+1\right)}+\frac{2-x^{2}}{x\left(x-1\right)}}
Factor x^{2}-x.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x^{2}+3x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}+\frac{\left(2-x^{2}\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and x\left(x-1\right) is x\left(x-1\right)\left(x+1\right). Multiply \frac{x^{2}+3x+1}{x\left(x+1\right)} times \frac{x-1}{x-1}. Multiply \frac{2-x^{2}}{x\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{\left(x^{2}+3x+1\right)\left(x-1\right)+\left(2-x^{2}\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}}
Since \frac{\left(x^{2}+3x+1\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)} and \frac{\left(2-x^{2}\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{3}-x^{2}+3x^{2}-3x+x-1+2x+2-x^{3}-x^{2}}{x\left(x-1\right)\left(x+1\right)}}
Do the multiplications in \left(x^{2}+3x+1\right)\left(x-1\right)+\left(2-x^{2}\right)\left(x+1\right).
\frac{\frac{x^{2}+x}{x^{2}-2x+1}}{\frac{x^{2}+1}{x\left(x-1\right)\left(x+1\right)}}
Combine like terms in x^{3}-x^{2}+3x^{2}-3x+x-1+2x+2-x^{3}-x^{2}.
\frac{\left(x^{2}+x\right)x\left(x-1\right)\left(x+1\right)}{\left(x^{2}-2x+1\right)\left(x^{2}+1\right)}
Divide \frac{x^{2}+x}{x^{2}-2x+1} by \frac{x^{2}+1}{x\left(x-1\right)\left(x+1\right)} by multiplying \frac{x^{2}+x}{x^{2}-2x+1} by the reciprocal of \frac{x^{2}+1}{x\left(x-1\right)\left(x+1\right)}.
\frac{\left(x-1\right)x^{2}\left(x+1\right)^{2}}{\left(x-1\right)^{2}\left(x^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{x^{2}\left(x+1\right)^{2}}{\left(x-1\right)\left(x^{2}+1\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x^{4}+2x^{3}+x^{2}}{x^{3}-x^{2}+x-1}
Expand the expression.