Solve for x
x=8\sqrt{15}-24\approx 6.98386677
x=-8\sqrt{15}-24\approx -54.98386677
Graph
Share
Copied to clipboard
5x^{2}=3\left(x-16\right)^{2}
Variable x cannot be equal to 16 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-16\right)^{2}, the least common multiple of \left(x-16\right)^{2},5.
5x^{2}=3\left(x^{2}-32x+256\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-16\right)^{2}.
5x^{2}=3x^{2}-96x+768
Use the distributive property to multiply 3 by x^{2}-32x+256.
5x^{2}-3x^{2}=-96x+768
Subtract 3x^{2} from both sides.
2x^{2}=-96x+768
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}+96x=768
Add 96x to both sides.
2x^{2}+96x-768=0
Subtract 768 from both sides.
x=\frac{-96±\sqrt{96^{2}-4\times 2\left(-768\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 96 for b, and -768 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-96±\sqrt{9216-4\times 2\left(-768\right)}}{2\times 2}
Square 96.
x=\frac{-96±\sqrt{9216-8\left(-768\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-96±\sqrt{9216+6144}}{2\times 2}
Multiply -8 times -768.
x=\frac{-96±\sqrt{15360}}{2\times 2}
Add 9216 to 6144.
x=\frac{-96±32\sqrt{15}}{2\times 2}
Take the square root of 15360.
x=\frac{-96±32\sqrt{15}}{4}
Multiply 2 times 2.
x=\frac{32\sqrt{15}-96}{4}
Now solve the equation x=\frac{-96±32\sqrt{15}}{4} when ± is plus. Add -96 to 32\sqrt{15}.
x=8\sqrt{15}-24
Divide -96+32\sqrt{15} by 4.
x=\frac{-32\sqrt{15}-96}{4}
Now solve the equation x=\frac{-96±32\sqrt{15}}{4} when ± is minus. Subtract 32\sqrt{15} from -96.
x=-8\sqrt{15}-24
Divide -96-32\sqrt{15} by 4.
x=8\sqrt{15}-24 x=-8\sqrt{15}-24
The equation is now solved.
5x^{2}=3\left(x-16\right)^{2}
Variable x cannot be equal to 16 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-16\right)^{2}, the least common multiple of \left(x-16\right)^{2},5.
5x^{2}=3\left(x^{2}-32x+256\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-16\right)^{2}.
5x^{2}=3x^{2}-96x+768
Use the distributive property to multiply 3 by x^{2}-32x+256.
5x^{2}-3x^{2}=-96x+768
Subtract 3x^{2} from both sides.
2x^{2}=-96x+768
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}+96x=768
Add 96x to both sides.
\frac{2x^{2}+96x}{2}=\frac{768}{2}
Divide both sides by 2.
x^{2}+\frac{96}{2}x=\frac{768}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+48x=\frac{768}{2}
Divide 96 by 2.
x^{2}+48x=384
Divide 768 by 2.
x^{2}+48x+24^{2}=384+24^{2}
Divide 48, the coefficient of the x term, by 2 to get 24. Then add the square of 24 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+48x+576=384+576
Square 24.
x^{2}+48x+576=960
Add 384 to 576.
\left(x+24\right)^{2}=960
Factor x^{2}+48x+576. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+24\right)^{2}}=\sqrt{960}
Take the square root of both sides of the equation.
x+24=8\sqrt{15} x+24=-8\sqrt{15}
Simplify.
x=8\sqrt{15}-24 x=-8\sqrt{15}-24
Subtract 24 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}