Evaluate
x+y
Expand
x+y
Quiz
Algebra
5 problems similar to:
\frac{ { x }^{ -1 } y-x { y }^{ -1 } }{ { x }^{ -1 } - { y }^{ -1 } }
Share
Copied to clipboard
\frac{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}{\left(-\frac{1}{y}x+1\right)\times \frac{1}{x}}
Factor the expressions that are not already factored.
\frac{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}{-\frac{1}{y}x+1}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{-\frac{1}{y}x^{2}+y}{-\frac{1}{y}x+1}
Expand the expression.
\frac{-\frac{x^{2}}{y}+y}{-\frac{1}{y}x+1}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{-\frac{x^{2}}{y}+\frac{yy}{y}}{-\frac{1}{y}x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{-x^{2}+yy}{y}}{-\frac{1}{y}x+1}
Since -\frac{x^{2}}{y} and \frac{yy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}+y^{2}}{y}}{-\frac{1}{y}x+1}
Do the multiplications in -x^{2}+yy.
\frac{\frac{-x^{2}+y^{2}}{y}}{-\frac{x}{y}+1}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-x^{2}+y^{2}}{y}}{-\frac{x}{y}+\frac{y}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{-x^{2}+y^{2}}{y}}{\frac{-x+y}{y}}
Since -\frac{x}{y} and \frac{y}{y} have the same denominator, add them by adding their numerators.
\frac{\left(-x^{2}+y^{2}\right)y}{y\left(-x+y\right)}
Divide \frac{-x^{2}+y^{2}}{y} by \frac{-x+y}{y} by multiplying \frac{-x^{2}+y^{2}}{y} by the reciprocal of \frac{-x+y}{y}.
\frac{-x^{2}+y^{2}}{-x+y}
Cancel out y in both numerator and denominator.
\frac{\left(x+y\right)\left(-x+y\right)}{-x+y}
Factor the expressions that are not already factored.
x+y
Cancel out -x+y in both numerator and denominator.
\frac{\frac{1}{x}\times \frac{1}{y}\left(x-y\right)\left(-x-y\right)}{\left(-\frac{1}{y}x+1\right)\times \frac{1}{x}}
Factor the expressions that are not already factored.
\frac{\frac{1}{y}\left(x-y\right)\left(-x-y\right)}{-\frac{1}{y}x+1}
Cancel out \frac{1}{x} in both numerator and denominator.
\frac{-\frac{1}{y}x^{2}+y}{-\frac{1}{y}x+1}
Expand the expression.
\frac{-\frac{x^{2}}{y}+y}{-\frac{1}{y}x+1}
Express \frac{1}{y}x^{2} as a single fraction.
\frac{-\frac{x^{2}}{y}+\frac{yy}{y}}{-\frac{1}{y}x+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{-x^{2}+yy}{y}}{-\frac{1}{y}x+1}
Since -\frac{x^{2}}{y} and \frac{yy}{y} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}+y^{2}}{y}}{-\frac{1}{y}x+1}
Do the multiplications in -x^{2}+yy.
\frac{\frac{-x^{2}+y^{2}}{y}}{-\frac{x}{y}+1}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-x^{2}+y^{2}}{y}}{-\frac{x}{y}+\frac{y}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{y}{y}.
\frac{\frac{-x^{2}+y^{2}}{y}}{\frac{-x+y}{y}}
Since -\frac{x}{y} and \frac{y}{y} have the same denominator, add them by adding their numerators.
\frac{\left(-x^{2}+y^{2}\right)y}{y\left(-x+y\right)}
Divide \frac{-x^{2}+y^{2}}{y} by \frac{-x+y}{y} by multiplying \frac{-x^{2}+y^{2}}{y} by the reciprocal of \frac{-x+y}{y}.
\frac{-x^{2}+y^{2}}{-x+y}
Cancel out y in both numerator and denominator.
\frac{\left(x+y\right)\left(-x+y\right)}{-x+y}
Factor the expressions that are not already factored.
x+y
Cancel out -x+y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}