Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}-1-\frac{m-1}{m+1}
Express \frac{\frac{m^{2}-2m+1}{m^{2}-1}}{m} as a single fraction.
\frac{\left(m-1\right)^{2}}{m\left(m-1\right)\left(m+1\right)}-1-\frac{m-1}{m+1}
Factor the expressions that are not already factored in \frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}.
\frac{m-1}{m\left(m+1\right)}-1-\frac{m-1}{m+1}
Cancel out m-1 in both numerator and denominator.
\frac{m-1}{m\left(m+1\right)}-\frac{m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m\left(m+1\right)}{m\left(m+1\right)}.
\frac{m-1-m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
Since \frac{m-1}{m\left(m+1\right)} and \frac{m\left(m+1\right)}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m-1-m^{2}-m}{m\left(m+1\right)}-\frac{m-1}{m+1}
Do the multiplications in m-1-m\left(m+1\right).
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{m-1}{m+1}
Combine like terms in m-1-m^{2}-m.
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{\left(m-1\right)m}{m\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m+1\right) and m+1 is m\left(m+1\right). Multiply \frac{m-1}{m+1} times \frac{m}{m}.
\frac{-1-m^{2}-\left(m-1\right)m}{m\left(m+1\right)}
Since \frac{-1-m^{2}}{m\left(m+1\right)} and \frac{\left(m-1\right)m}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1-m^{2}-m^{2}+m}{m\left(m+1\right)}
Do the multiplications in -1-m^{2}-\left(m-1\right)m.
\frac{-1-2m^{2}+m}{m\left(m+1\right)}
Combine like terms in -1-m^{2}-m^{2}+m.
\frac{-1-2m^{2}+m}{m^{2}+m}
Expand m\left(m+1\right).
\frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}-1-\frac{m-1}{m+1}
Express \frac{\frac{m^{2}-2m+1}{m^{2}-1}}{m} as a single fraction.
\frac{\left(m-1\right)^{2}}{m\left(m-1\right)\left(m+1\right)}-1-\frac{m-1}{m+1}
Factor the expressions that are not already factored in \frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}.
\frac{m-1}{m\left(m+1\right)}-1-\frac{m-1}{m+1}
Cancel out m-1 in both numerator and denominator.
\frac{m-1}{m\left(m+1\right)}-\frac{m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m\left(m+1\right)}{m\left(m+1\right)}.
\frac{m-1-m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
Since \frac{m-1}{m\left(m+1\right)} and \frac{m\left(m+1\right)}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m-1-m^{2}-m}{m\left(m+1\right)}-\frac{m-1}{m+1}
Do the multiplications in m-1-m\left(m+1\right).
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{m-1}{m+1}
Combine like terms in m-1-m^{2}-m.
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{\left(m-1\right)m}{m\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m+1\right) and m+1 is m\left(m+1\right). Multiply \frac{m-1}{m+1} times \frac{m}{m}.
\frac{-1-m^{2}-\left(m-1\right)m}{m\left(m+1\right)}
Since \frac{-1-m^{2}}{m\left(m+1\right)} and \frac{\left(m-1\right)m}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1-m^{2}-m^{2}+m}{m\left(m+1\right)}
Do the multiplications in -1-m^{2}-\left(m-1\right)m.
\frac{-1-2m^{2}+m}{m\left(m+1\right)}
Combine like terms in -1-m^{2}-m^{2}+m.
\frac{-1-2m^{2}+m}{m^{2}+m}
Expand m\left(m+1\right).