Evaluate
\frac{-2m^{2}+m-1}{m\left(m+1\right)}
Expand
\frac{-2m^{2}+m-1}{m\left(m+1\right)}
Share
Copied to clipboard
\frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}-1-\frac{m-1}{m+1}
Express \frac{\frac{m^{2}-2m+1}{m^{2}-1}}{m} as a single fraction.
\frac{\left(m-1\right)^{2}}{m\left(m-1\right)\left(m+1\right)}-1-\frac{m-1}{m+1}
Factor the expressions that are not already factored in \frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}.
\frac{m-1}{m\left(m+1\right)}-1-\frac{m-1}{m+1}
Cancel out m-1 in both numerator and denominator.
\frac{m-1}{m\left(m+1\right)}-\frac{m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m\left(m+1\right)}{m\left(m+1\right)}.
\frac{m-1-m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
Since \frac{m-1}{m\left(m+1\right)} and \frac{m\left(m+1\right)}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m-1-m^{2}-m}{m\left(m+1\right)}-\frac{m-1}{m+1}
Do the multiplications in m-1-m\left(m+1\right).
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{m-1}{m+1}
Combine like terms in m-1-m^{2}-m.
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{\left(m-1\right)m}{m\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m+1\right) and m+1 is m\left(m+1\right). Multiply \frac{m-1}{m+1} times \frac{m}{m}.
\frac{-1-m^{2}-\left(m-1\right)m}{m\left(m+1\right)}
Since \frac{-1-m^{2}}{m\left(m+1\right)} and \frac{\left(m-1\right)m}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1-m^{2}-m^{2}+m}{m\left(m+1\right)}
Do the multiplications in -1-m^{2}-\left(m-1\right)m.
\frac{-1-2m^{2}+m}{m\left(m+1\right)}
Combine like terms in -1-m^{2}-m^{2}+m.
\frac{-1-2m^{2}+m}{m^{2}+m}
Expand m\left(m+1\right).
\frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}-1-\frac{m-1}{m+1}
Express \frac{\frac{m^{2}-2m+1}{m^{2}-1}}{m} as a single fraction.
\frac{\left(m-1\right)^{2}}{m\left(m-1\right)\left(m+1\right)}-1-\frac{m-1}{m+1}
Factor the expressions that are not already factored in \frac{m^{2}-2m+1}{\left(m^{2}-1\right)m}.
\frac{m-1}{m\left(m+1\right)}-1-\frac{m-1}{m+1}
Cancel out m-1 in both numerator and denominator.
\frac{m-1}{m\left(m+1\right)}-\frac{m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m\left(m+1\right)}{m\left(m+1\right)}.
\frac{m-1-m\left(m+1\right)}{m\left(m+1\right)}-\frac{m-1}{m+1}
Since \frac{m-1}{m\left(m+1\right)} and \frac{m\left(m+1\right)}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{m-1-m^{2}-m}{m\left(m+1\right)}-\frac{m-1}{m+1}
Do the multiplications in m-1-m\left(m+1\right).
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{m-1}{m+1}
Combine like terms in m-1-m^{2}-m.
\frac{-1-m^{2}}{m\left(m+1\right)}-\frac{\left(m-1\right)m}{m\left(m+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m\left(m+1\right) and m+1 is m\left(m+1\right). Multiply \frac{m-1}{m+1} times \frac{m}{m}.
\frac{-1-m^{2}-\left(m-1\right)m}{m\left(m+1\right)}
Since \frac{-1-m^{2}}{m\left(m+1\right)} and \frac{\left(m-1\right)m}{m\left(m+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-1-m^{2}-m^{2}+m}{m\left(m+1\right)}
Do the multiplications in -1-m^{2}-\left(m-1\right)m.
\frac{-1-2m^{2}+m}{m\left(m+1\right)}
Combine like terms in -1-m^{2}-m^{2}+m.
\frac{-1-2m^{2}+m}{m^{2}+m}
Expand m\left(m+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}