Verify
true
Share
Copied to clipboard
\frac{8^{-10}-5^{11}\times 0}{2^{-10}-2^{14}}\leq 0
To multiply powers of the same base, add their exponents. Add 1 and 10 to get 11.
\frac{\frac{1}{1073741824}-5^{11}\times 0}{2^{-10}-2^{14}}\leq 0
Calculate 8 to the power of -10 and get \frac{1}{1073741824}.
\frac{\frac{1}{1073741824}-48828125\times 0}{2^{-10}-2^{14}}\leq 0
Calculate 5 to the power of 11 and get 48828125.
\frac{\frac{1}{1073741824}-0}{2^{-10}-2^{14}}\leq 0
Multiply 48828125 and 0 to get 0.
\frac{\frac{1}{1073741824}}{2^{-10}-2^{14}}\leq 0
Subtract 0 from \frac{1}{1073741824} to get \frac{1}{1073741824}.
\frac{\frac{1}{1073741824}}{\frac{1}{1024}-2^{14}}\leq 0
Calculate 2 to the power of -10 and get \frac{1}{1024}.
\frac{\frac{1}{1073741824}}{\frac{1}{1024}-16384}\leq 0
Calculate 2 to the power of 14 and get 16384.
\frac{\frac{1}{1073741824}}{-\frac{16777215}{1024}}\leq 0
Subtract 16384 from \frac{1}{1024} to get -\frac{16777215}{1024}.
\frac{1}{1073741824}\left(-\frac{1024}{16777215}\right)\leq 0
Divide \frac{1}{1073741824} by -\frac{16777215}{1024} by multiplying \frac{1}{1073741824} by the reciprocal of -\frac{16777215}{1024}.
-\frac{1}{17592184995840}\leq 0
Multiply \frac{1}{1073741824} and -\frac{1024}{16777215} to get -\frac{1}{17592184995840}.
\text{true}
Compare -\frac{1}{17592184995840} and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}