Verify
true
Share
Copied to clipboard
\frac{256}{\sqrt[4]{4}}=128\sqrt{2}
Calculate 4 to the power of 4 and get 256.
\sqrt[4]{4}=\sqrt[4]{2^{2}}=2^{\frac{2}{4}}=2^{\frac{1}{2}}=\sqrt{2}
Rewrite \sqrt[4]{4} as \sqrt[4]{2^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
\frac{256}{\sqrt{2}}=128\sqrt{2}
Insert the obtained value back in the expression.
\frac{256\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=128\sqrt{2}
Rationalize the denominator of \frac{256}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{256\sqrt{2}}{2}=128\sqrt{2}
The square of \sqrt{2} is 2.
128\sqrt{2}=128\sqrt{2}
Divide 256\sqrt{2} by 2 to get 128\sqrt{2}.
128\sqrt{2}-128\sqrt{2}=0
Subtract 128\sqrt{2} from both sides.
0=0
Combine 128\sqrt{2} and -128\sqrt{2} to get 0.
\text{true}
Compare 0 and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}