Solve for t
t = \frac{32}{7} = 4\frac{4}{7} \approx 4.571428571
Share
Copied to clipboard
17\left(20^{2}+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1020t, the least common multiple of 60t,-102t.
17\left(400+\left(1.5t\right)^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Calculate 20 to the power of 2 and get 400.
17\left(400+1.5^{2}t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Expand \left(1.5t\right)^{2}.
17\left(400+2.25t^{2}-\left(12+1.5t\right)^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Calculate 1.5 to the power of 2 and get 2.25.
17\left(400+2.25t^{2}-\left(144+36t+2.25t^{2}\right)\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12+1.5t\right)^{2}.
17\left(400+2.25t^{2}-144-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
To find the opposite of 144+36t+2.25t^{2}, find the opposite of each term.
17\left(256+2.25t^{2}-36t-2.25t^{2}\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Subtract 144 from 400 to get 256.
17\left(256-36t\right)=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Combine 2.25t^{2} and -2.25t^{2} to get 0.
4352-612t=-10\left(34^{2}+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Use the distributive property to multiply 17 by 256-36t.
4352-612t=-10\left(1156+\left(1.5t\right)^{2}-\left(30+1.5t\right)^{2}\right)
Calculate 34 to the power of 2 and get 1156.
4352-612t=-10\left(1156+1.5^{2}t^{2}-\left(30+1.5t\right)^{2}\right)
Expand \left(1.5t\right)^{2}.
4352-612t=-10\left(1156+2.25t^{2}-\left(30+1.5t\right)^{2}\right)
Calculate 1.5 to the power of 2 and get 2.25.
4352-612t=-10\left(1156+2.25t^{2}-\left(900+90t+2.25t^{2}\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(30+1.5t\right)^{2}.
4352-612t=-10\left(1156+2.25t^{2}-900-90t-2.25t^{2}\right)
To find the opposite of 900+90t+2.25t^{2}, find the opposite of each term.
4352-612t=-10\left(256+2.25t^{2}-90t-2.25t^{2}\right)
Subtract 900 from 1156 to get 256.
4352-612t=-10\left(256-90t\right)
Combine 2.25t^{2} and -2.25t^{2} to get 0.
4352-612t=-2560+900t
Use the distributive property to multiply -10 by 256-90t.
4352-612t-900t=-2560
Subtract 900t from both sides.
4352-1512t=-2560
Combine -612t and -900t to get -1512t.
-1512t=-2560-4352
Subtract 4352 from both sides.
-1512t=-6912
Subtract 4352 from -2560 to get -6912.
t=\frac{-6912}{-1512}
Divide both sides by -1512.
t=\frac{32}{7}
Reduce the fraction \frac{-6912}{-1512} to lowest terms by extracting and canceling out -216.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}