Solve for x
x=\frac{y-1}{3}
y\neq -2
Solve for y
y=3x+1
x\neq -1
Graph
Share
Copied to clipboard
\left(\frac{1}{3}y+\frac{2}{3}\right)\times 1^{2}=x+1
Multiply both sides of the equation by y+2.
\left(\frac{1}{3}y+\frac{2}{3}\right)\times 1=x+1
Calculate 1 to the power of 2 and get 1.
\frac{1}{3}y+\frac{2}{3}=x+1
Use the distributive property to multiply \frac{1}{3}y+\frac{2}{3} by 1.
x+1=\frac{1}{3}y+\frac{2}{3}
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{3}y+\frac{2}{3}-1
Subtract 1 from both sides.
x=\frac{1}{3}y-\frac{1}{3}
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
\left(\frac{1}{3}y+\frac{2}{3}\right)\times 1^{2}=x+1
Variable y cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by y+2.
\left(\frac{1}{3}y+\frac{2}{3}\right)\times 1=x+1
Calculate 1 to the power of 2 and get 1.
\frac{1}{3}y+\frac{2}{3}=x+1
Use the distributive property to multiply \frac{1}{3}y+\frac{2}{3} by 1.
\frac{1}{3}y=x+1-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
\frac{1}{3}y=x+\frac{1}{3}
Subtract \frac{2}{3} from 1 to get \frac{1}{3}.
\frac{\frac{1}{3}y}{\frac{1}{3}}=\frac{x+\frac{1}{3}}{\frac{1}{3}}
Multiply both sides by 3.
y=\frac{x+\frac{1}{3}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
y=3x+1
Divide x+\frac{1}{3} by \frac{1}{3} by multiplying x+\frac{1}{3} by the reciprocal of \frac{1}{3}.
y=3x+1\text{, }y\neq -2
Variable y cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}