Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3^{-2}\left(x^{-1}\right)^{-2}}{\left(3x^{2}\right)^{-2}}
Expand \left(3x^{-1}\right)^{-2}.
\frac{3^{-2}x^{2}}{\left(3x^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{\frac{1}{9}x^{2}}{\left(3x^{2}\right)^{-2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}x^{2}}{3^{-2}\left(x^{2}\right)^{-2}}
Expand \left(3x^{2}\right)^{-2}.
\frac{\frac{1}{9}x^{2}}{3^{-2}x^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{9}x^{2}}{\frac{1}{9}x^{-4}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}x^{6}}{\frac{1}{9}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{6}}{\left(\frac{1}{9}\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{x^{6}}{1}
Calculate \frac{1}{9} to the power of 0 and get 1.
x^{6}
Anything divided by one gives itself.
\frac{3^{-2}\left(x^{-1}\right)^{-2}}{\left(3x^{2}\right)^{-2}}
Expand \left(3x^{-1}\right)^{-2}.
\frac{3^{-2}x^{2}}{\left(3x^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -1 and -2 to get 2.
\frac{\frac{1}{9}x^{2}}{\left(3x^{2}\right)^{-2}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}x^{2}}{3^{-2}\left(x^{2}\right)^{-2}}
Expand \left(3x^{2}\right)^{-2}.
\frac{\frac{1}{9}x^{2}}{3^{-2}x^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{9}x^{2}}{\frac{1}{9}x^{-4}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{9}x^{6}}{\frac{1}{9}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{x^{6}}{\left(\frac{1}{9}\right)^{0}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{x^{6}}{1}
Calculate \frac{1}{9} to the power of 0 and get 1.
x^{6}
Anything divided by one gives itself.