Evaluate
\frac{k^{22}}{48}
Expand
\frac{k^{22}}{48}
Share
Copied to clipboard
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}\left(k^{3}\right)^{-6}}
To raise a power to another power, multiply the exponents. Multiply -5 and -1 to get 5.
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}k^{-18}}
To raise a power to another power, multiply the exponents. Multiply 3 and -6 to get -18.
\frac{\left(2k\right)^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{-3}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Expand \left(2k\right)^{-3}.
\frac{\frac{1}{8}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}k^{20}}{\left(6k^{-2}\right)^{1}}
To multiply powers of the same base, add their exponents. Add -3 and 23 to get 20.
\frac{\frac{1}{8}k^{20}}{6k^{-2}}
Calculate 6k^{-2} to the power of 1 and get 6k^{-2}.
\frac{\frac{1}{8}k^{22}}{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{48}k^{22}
Divide \frac{1}{8}k^{22} by 6 to get \frac{1}{48}k^{22}.
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}\left(k^{3}\right)^{-6}}
To raise a power to another power, multiply the exponents. Multiply -5 and -1 to get 5.
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}k^{-18}}
To raise a power to another power, multiply the exponents. Multiply 3 and -6 to get -18.
\frac{\left(2k\right)^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{-3}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Expand \left(2k\right)^{-3}.
\frac{\frac{1}{8}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}k^{20}}{\left(6k^{-2}\right)^{1}}
To multiply powers of the same base, add their exponents. Add -3 and 23 to get 20.
\frac{\frac{1}{8}k^{20}}{6k^{-2}}
Calculate 6k^{-2} to the power of 1 and get 6k^{-2}.
\frac{\frac{1}{8}k^{22}}{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{48}k^{22}
Divide \frac{1}{8}k^{22} by 6 to get \frac{1}{48}k^{22}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}