Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}\left(k^{3}\right)^{-6}}
To raise a power to another power, multiply the exponents. Multiply -5 and -1 to get 5.
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}k^{-18}}
To raise a power to another power, multiply the exponents. Multiply 3 and -6 to get -18.
\frac{\left(2k\right)^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{-3}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Expand \left(2k\right)^{-3}.
\frac{\frac{1}{8}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}k^{20}}{\left(6k^{-2}\right)^{1}}
To multiply powers of the same base, add their exponents. Add -3 and 23 to get 20.
\frac{\frac{1}{8}k^{20}}{6k^{-2}}
Calculate 6k^{-2} to the power of 1 and get 6k^{-2}.
\frac{\frac{1}{8}k^{22}}{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{48}k^{22}
Divide \frac{1}{8}k^{22} by 6 to get \frac{1}{48}k^{22}.
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}\left(k^{3}\right)^{-6}}
To raise a power to another power, multiply the exponents. Multiply -5 and -1 to get 5.
\frac{\left(2k\right)^{-3}k^{5}}{\left(6k^{-2}\right)^{1}k^{-18}}
To raise a power to another power, multiply the exponents. Multiply 3 and -6 to get -18.
\frac{\left(2k\right)^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{2^{-3}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Expand \left(2k\right)^{-3}.
\frac{\frac{1}{8}k^{-3}k^{23}}{\left(6k^{-2}\right)^{1}}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\frac{\frac{1}{8}k^{20}}{\left(6k^{-2}\right)^{1}}
To multiply powers of the same base, add their exponents. Add -3 and 23 to get 20.
\frac{\frac{1}{8}k^{20}}{6k^{-2}}
Calculate 6k^{-2} to the power of 1 and get 6k^{-2}.
\frac{\frac{1}{8}k^{22}}{6}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{48}k^{22}
Divide \frac{1}{8}k^{22} by 6 to get \frac{1}{48}k^{22}.