\frac{ { \left(2 \sqrt{ 7 } -4 \right) }^{ 2 } }{ } +( \frac{ 2 \sqrt{ 7 } +4 }{ 2 }
Evaluate
46-15\sqrt{7}\approx 6.313730334
Share
Copied to clipboard
\frac{4\left(\sqrt{7}\right)^{2}-16\sqrt{7}+16}{1}+\frac{2\sqrt{7}+4}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{7}-4\right)^{2}.
\frac{4\times 7-16\sqrt{7}+16}{1}+\frac{2\sqrt{7}+4}{2}
The square of \sqrt{7} is 7.
\frac{28-16\sqrt{7}+16}{1}+\frac{2\sqrt{7}+4}{2}
Multiply 4 and 7 to get 28.
\frac{44-16\sqrt{7}}{1}+\frac{2\sqrt{7}+4}{2}
Add 28 and 16 to get 44.
44-16\sqrt{7}+\frac{2\sqrt{7}+4}{2}
Anything divided by one gives itself.
44-16\sqrt{7}+\sqrt{7}+2
Divide each term of 2\sqrt{7}+4 by 2 to get \sqrt{7}+2.
44-15\sqrt{7}+2
Combine -16\sqrt{7} and \sqrt{7} to get -15\sqrt{7}.
46-15\sqrt{7}
Add 44 and 2 to get 46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}