Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(\left(-1-x\right)^{2}+\left(4+x-3\right)^{2}\right)=\left(x-4\right)^{2}
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-4\right)^{2}, the least common multiple of \left(4-x\right)^{2}+\left(-1+x-3\right)^{2},4.
2\left(1+2x+x^{2}+\left(4+x-3\right)^{2}\right)=\left(x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1-x\right)^{2}.
2\left(1+2x+x^{2}+\left(1+x\right)^{2}\right)=\left(x-4\right)^{2}
Subtract 3 from 4 to get 1.
2\left(1+2x+x^{2}+1+2x+x^{2}\right)=\left(x-4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
2\left(2+2x+x^{2}+2x+x^{2}\right)=\left(x-4\right)^{2}
Add 1 and 1 to get 2.
2\left(2+4x+x^{2}+x^{2}\right)=\left(x-4\right)^{2}
Combine 2x and 2x to get 4x.
2\left(2+4x+2x^{2}\right)=\left(x-4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
4+8x+4x^{2}=\left(x-4\right)^{2}
Use the distributive property to multiply 2 by 2+4x+2x^{2}.
4+8x+4x^{2}=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
4+8x+4x^{2}-x^{2}=-8x+16
Subtract x^{2} from both sides.
4+8x+3x^{2}=-8x+16
Combine 4x^{2} and -x^{2} to get 3x^{2}.
4+8x+3x^{2}+8x=16
Add 8x to both sides.
4+16x+3x^{2}=16
Combine 8x and 8x to get 16x.
4+16x+3x^{2}-16=0
Subtract 16 from both sides.
-12+16x+3x^{2}=0
Subtract 16 from 4 to get -12.
3x^{2}+16x-12=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=16 ab=3\left(-12\right)=-36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,36 -2,18 -3,12 -4,9 -6,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Calculate the sum for each pair.
a=-2 b=18
The solution is the pair that gives sum 16.
\left(3x^{2}-2x\right)+\left(18x-12\right)
Rewrite 3x^{2}+16x-12 as \left(3x^{2}-2x\right)+\left(18x-12\right).
x\left(3x-2\right)+6\left(3x-2\right)
Factor out x in the first and 6 in the second group.
\left(3x-2\right)\left(x+6\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=-6
To find equation solutions, solve 3x-2=0 and x+6=0.
2\left(\left(-1-x\right)^{2}+\left(4+x-3\right)^{2}\right)=\left(x-4\right)^{2}
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-4\right)^{2}, the least common multiple of \left(4-x\right)^{2}+\left(-1+x-3\right)^{2},4.
2\left(1+2x+x^{2}+\left(4+x-3\right)^{2}\right)=\left(x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1-x\right)^{2}.
2\left(1+2x+x^{2}+\left(1+x\right)^{2}\right)=\left(x-4\right)^{2}
Subtract 3 from 4 to get 1.
2\left(1+2x+x^{2}+1+2x+x^{2}\right)=\left(x-4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
2\left(2+2x+x^{2}+2x+x^{2}\right)=\left(x-4\right)^{2}
Add 1 and 1 to get 2.
2\left(2+4x+x^{2}+x^{2}\right)=\left(x-4\right)^{2}
Combine 2x and 2x to get 4x.
2\left(2+4x+2x^{2}\right)=\left(x-4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
4+8x+4x^{2}=\left(x-4\right)^{2}
Use the distributive property to multiply 2 by 2+4x+2x^{2}.
4+8x+4x^{2}=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
4+8x+4x^{2}-x^{2}=-8x+16
Subtract x^{2} from both sides.
4+8x+3x^{2}=-8x+16
Combine 4x^{2} and -x^{2} to get 3x^{2}.
4+8x+3x^{2}+8x=16
Add 8x to both sides.
4+16x+3x^{2}=16
Combine 8x and 8x to get 16x.
4+16x+3x^{2}-16=0
Subtract 16 from both sides.
-12+16x+3x^{2}=0
Subtract 16 from 4 to get -12.
3x^{2}+16x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\times 3\left(-12\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 16 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 3\left(-12\right)}}{2\times 3}
Square 16.
x=\frac{-16±\sqrt{256-12\left(-12\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-16±\sqrt{256+144}}{2\times 3}
Multiply -12 times -12.
x=\frac{-16±\sqrt{400}}{2\times 3}
Add 256 to 144.
x=\frac{-16±20}{2\times 3}
Take the square root of 400.
x=\frac{-16±20}{6}
Multiply 2 times 3.
x=\frac{4}{6}
Now solve the equation x=\frac{-16±20}{6} when ± is plus. Add -16 to 20.
x=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{36}{6}
Now solve the equation x=\frac{-16±20}{6} when ± is minus. Subtract 20 from -16.
x=-6
Divide -36 by 6.
x=\frac{2}{3} x=-6
The equation is now solved.
2\left(\left(-1-x\right)^{2}+\left(4+x-3\right)^{2}\right)=\left(x-4\right)^{2}
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-4\right)^{2}, the least common multiple of \left(4-x\right)^{2}+\left(-1+x-3\right)^{2},4.
2\left(1+2x+x^{2}+\left(4+x-3\right)^{2}\right)=\left(x-4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-1-x\right)^{2}.
2\left(1+2x+x^{2}+\left(1+x\right)^{2}\right)=\left(x-4\right)^{2}
Subtract 3 from 4 to get 1.
2\left(1+2x+x^{2}+1+2x+x^{2}\right)=\left(x-4\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
2\left(2+2x+x^{2}+2x+x^{2}\right)=\left(x-4\right)^{2}
Add 1 and 1 to get 2.
2\left(2+4x+x^{2}+x^{2}\right)=\left(x-4\right)^{2}
Combine 2x and 2x to get 4x.
2\left(2+4x+2x^{2}\right)=\left(x-4\right)^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
4+8x+4x^{2}=\left(x-4\right)^{2}
Use the distributive property to multiply 2 by 2+4x+2x^{2}.
4+8x+4x^{2}=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
4+8x+4x^{2}-x^{2}=-8x+16
Subtract x^{2} from both sides.
4+8x+3x^{2}=-8x+16
Combine 4x^{2} and -x^{2} to get 3x^{2}.
4+8x+3x^{2}+8x=16
Add 8x to both sides.
4+16x+3x^{2}=16
Combine 8x and 8x to get 16x.
16x+3x^{2}=16-4
Subtract 4 from both sides.
16x+3x^{2}=12
Subtract 4 from 16 to get 12.
3x^{2}+16x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+16x}{3}=\frac{12}{3}
Divide both sides by 3.
x^{2}+\frac{16}{3}x=\frac{12}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{16}{3}x=4
Divide 12 by 3.
x^{2}+\frac{16}{3}x+\left(\frac{8}{3}\right)^{2}=4+\left(\frac{8}{3}\right)^{2}
Divide \frac{16}{3}, the coefficient of the x term, by 2 to get \frac{8}{3}. Then add the square of \frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{16}{3}x+\frac{64}{9}=4+\frac{64}{9}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{16}{3}x+\frac{64}{9}=\frac{100}{9}
Add 4 to \frac{64}{9}.
\left(x+\frac{8}{3}\right)^{2}=\frac{100}{9}
Factor x^{2}+\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{8}{3}\right)^{2}}=\sqrt{\frac{100}{9}}
Take the square root of both sides of the equation.
x+\frac{8}{3}=\frac{10}{3} x+\frac{8}{3}=-\frac{10}{3}
Simplify.
x=\frac{2}{3} x=-6
Subtract \frac{8}{3} from both sides of the equation.