Verify
false
Share
Copied to clipboard
\frac{\left(2^{2}\times 5^{2}\right)^{2}}{2^{5}\times 10^{2}}=\frac{2^{2}\times 5^{2}}{2^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(4\times 5^{2}\right)^{2}}{2^{5}\times 10^{2}}=\frac{2^{2}\times 5^{2}}{2^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4\times 25\right)^{2}}{2^{5}\times 10^{2}}=\frac{2^{2}\times 5^{2}}{2^{3}}
Calculate 5 to the power of 2 and get 25.
\frac{100^{2}}{2^{5}\times 10^{2}}=\frac{2^{2}\times 5^{2}}{2^{3}}
Multiply 4 and 25 to get 100.
\frac{10000}{2^{5}\times 10^{2}}=\frac{2^{2}\times 5^{2}}{2^{3}}
Calculate 100 to the power of 2 and get 10000.
\frac{10000}{32\times 10^{2}}=\frac{2^{2}\times 5^{2}}{2^{3}}
Calculate 2 to the power of 5 and get 32.
\frac{10000}{32\times 100}=\frac{2^{2}\times 5^{2}}{2^{3}}
Calculate 10 to the power of 2 and get 100.
\frac{10000}{3200}=\frac{2^{2}\times 5^{2}}{2^{3}}
Multiply 32 and 100 to get 3200.
\frac{25}{8}=\frac{2^{2}\times 5^{2}}{2^{3}}
Reduce the fraction \frac{10000}{3200} to lowest terms by extracting and canceling out 400.
\frac{25}{8}=\frac{5^{2}}{2}
Cancel out 2^{2} in both numerator and denominator.
\frac{25}{8}=\frac{25}{2}
Calculate 5 to the power of 2 and get 25.
\frac{25}{8}=\frac{100}{8}
Least common multiple of 8 and 2 is 8. Convert \frac{25}{8} and \frac{25}{2} to fractions with denominator 8.
\text{false}
Compare \frac{25}{8} and \frac{100}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}