\frac{ { \left( \frac{ \frac{ 1 }{ 6 } }{ \frac{ 1 }{ 24 } } \right) }^{ } }{ - \frac{ 1 }{ 2 } \frac{ \frac{ 3 }{ 2 } }{ \frac{ 1 }{ 4 } } } - \frac{ 1 }{ 8 } \frac{ 2 }{ 3 } -6
Evaluate
-\frac{89}{12}\approx -7.416666667
Factor
-\frac{89}{12} = -7\frac{5}{12} = -7.416666666666667
Share
Copied to clipboard
\frac{\left(\frac{1}{6}\times 24\right)^{1}}{-\frac{1}{2}\times \frac{\frac{3}{2}}{\frac{1}{4}}}-\frac{1}{8}\times \frac{2}{3}-6
Divide \frac{1}{6} by \frac{1}{24} by multiplying \frac{1}{6} by the reciprocal of \frac{1}{24}.
\frac{4^{1}}{-\frac{1}{2}\times \frac{\frac{3}{2}}{\frac{1}{4}}}-\frac{1}{8}\times \frac{2}{3}-6
Multiply \frac{1}{6} and 24 to get 4.
\frac{4}{-\frac{1}{2}\times \frac{\frac{3}{2}}{\frac{1}{4}}}-\frac{1}{8}\times \frac{2}{3}-6
Calculate 4 to the power of 1 and get 4.
\frac{4}{-\frac{1}{2}\times \frac{3}{2}\times 4}-\frac{1}{8}\times \frac{2}{3}-6
Divide \frac{3}{2} by \frac{1}{4} by multiplying \frac{3}{2} by the reciprocal of \frac{1}{4}.
\frac{4}{-\frac{1}{2}\times 6}-\frac{1}{8}\times \frac{2}{3}-6
Multiply \frac{3}{2} and 4 to get 6.
\frac{4}{-3}-\frac{1}{8}\times \frac{2}{3}-6
Multiply -\frac{1}{2} and 6 to get -3.
-\frac{4}{3}-\frac{1}{8}\times \frac{2}{3}-6
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{4}{3}-\frac{1}{12}-6
Multiply \frac{1}{8} and \frac{2}{3} to get \frac{1}{12}.
-\frac{17}{12}-6
Subtract \frac{1}{12} from -\frac{4}{3} to get -\frac{17}{12}.
-\frac{89}{12}
Subtract 6 from -\frac{17}{12} to get -\frac{89}{12}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}