Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{2\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{2\sqrt{2}\sqrt{5}-2\sqrt{3}\sqrt{2}}{2}
Use the distributive property to multiply 2\sqrt{2} by \sqrt{5}-\sqrt{3}.
\frac{2\sqrt{10}-2\sqrt{3}\sqrt{2}}{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{10}-2\sqrt{6}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{10}-\sqrt{6}
Divide each term of 2\sqrt{10}-2\sqrt{6} by 2 to get \sqrt{10}-\sqrt{6}.