Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{6}.
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Consider \left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{7-6}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Square \sqrt{7}. Square \sqrt{6}.
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{1}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Subtract 6 from 7 to get 1.
\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Anything divided by one gives itself.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Multiply \sqrt{7}+\sqrt{6} and \sqrt{7}+\sqrt{6} to get \left(\sqrt{7}+\sqrt{6}\right)^{2}.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}-\sqrt{6}\right)}\right)^{2}
Express \frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}} as a single fraction.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}\right)^{2}
Consider \left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{7-\left(\sqrt{6}\right)^{2}}\right)^{2}
The square of \sqrt{7} is 7.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{7-6}\right)^{2}
The square of \sqrt{6} is 6.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{1}\right)^{2}
Subtract 6 from 7 to get 1.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+1^{2}
Anything divided by one gives itself.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+1
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{6}+\left(\sqrt{6}\right)^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+\sqrt{6}\right)^{2}.
7+2\sqrt{7}\sqrt{6}+\left(\sqrt{6}\right)^{2}+1
The square of \sqrt{7} is 7.
7+2\sqrt{42}+\left(\sqrt{6}\right)^{2}+1
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
7+2\sqrt{42}+6+1
The square of \sqrt{6} is 6.
13+2\sqrt{42}+1
Add 7 and 6 to get 13.
14+2\sqrt{42}
Add 13 and 1 to get 14.