Evaluate
2\left(\sqrt{42}+7\right)\approx 26.961481397
Share
Copied to clipboard
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}-\sqrt{6}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{6}.
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Consider \left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{7-6}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Square \sqrt{7}. Square \sqrt{6}.
\frac{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}{1}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Subtract 6 from 7 to get 1.
\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Anything divided by one gives itself.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}}\right)^{2}
Multiply \sqrt{7}+\sqrt{6} and \sqrt{7}+\sqrt{6} to get \left(\sqrt{7}+\sqrt{6}\right)^{2}.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{\left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}-\sqrt{6}\right)}\right)^{2}
Express \frac{\frac{1}{\sqrt{7}+\sqrt{6}}}{\sqrt{7}-\sqrt{6}} as a single fraction.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}\right)^{2}
Consider \left(\sqrt{7}+\sqrt{6}\right)\left(\sqrt{7}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{7-\left(\sqrt{6}\right)^{2}}\right)^{2}
The square of \sqrt{7} is 7.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{7-6}\right)^{2}
The square of \sqrt{6} is 6.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+\left(\frac{1}{1}\right)^{2}
Subtract 6 from 7 to get 1.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+1^{2}
Anything divided by one gives itself.
\left(\sqrt{7}+\sqrt{6}\right)^{2}+1
Calculate 1 to the power of 2 and get 1.
\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{6}+\left(\sqrt{6}\right)^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{7}+\sqrt{6}\right)^{2}.
7+2\sqrt{7}\sqrt{6}+\left(\sqrt{6}\right)^{2}+1
The square of \sqrt{7} is 7.
7+2\sqrt{42}+\left(\sqrt{6}\right)^{2}+1
To multiply \sqrt{7} and \sqrt{6}, multiply the numbers under the square root.
7+2\sqrt{42}+6+1
The square of \sqrt{6} is 6.
13+2\sqrt{42}+1
Add 7 and 6 to get 13.
14+2\sqrt{42}
Add 13 and 1 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}