Evaluate
-\frac{\sqrt{6}}{4}\approx -0.612372436
Share
Copied to clipboard
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{\left(\sqrt{10}\right)^{2}}}{\sqrt{\frac{2\times 5+2}{5}}}
Rationalize the denominator of \frac{9}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\sqrt{\frac{2\times 5+2}{5}}}
The square of \sqrt{10} is 10.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\sqrt{\frac{10+2}{5}}}
Multiply 2 and 5 to get 10.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\sqrt{\frac{12}{5}}}
Add 10 and 2 to get 12.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\frac{\sqrt{12}}{\sqrt{5}}}
Rewrite the square root of the division \sqrt{\frac{12}{5}} as the division of square roots \frac{\sqrt{12}}{\sqrt{5}}.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\frac{2\sqrt{3}}{\sqrt{5}}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\frac{2\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\frac{2\sqrt{3}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{\sqrt{6}}{2}-\frac{\frac{9\sqrt{10}}{10}}{\frac{2\sqrt{15}}{5}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{10}\times 5}{10\times 2\sqrt{15}}
Divide \frac{9\sqrt{10}}{10} by \frac{2\sqrt{15}}{5} by multiplying \frac{9\sqrt{10}}{10} by the reciprocal of \frac{2\sqrt{15}}{5}.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{10}}{2\times 2\sqrt{15}}
Cancel out 5 in both numerator and denominator.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{10}\sqrt{15}}{2\times 2\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{9\sqrt{10}}{2\times 2\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{10}\sqrt{15}}{2\times 2\times 15}
The square of \sqrt{15} is 15.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{150}}{2\times 2\times 15}
To multiply \sqrt{10} and \sqrt{15}, multiply the numbers under the square root.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{150}}{4\times 15}
Multiply 2 and 2 to get 4.
\frac{\sqrt{6}}{2}-\frac{9\sqrt{150}}{60}
Multiply 4 and 15 to get 60.
\frac{\sqrt{6}}{2}-\frac{9\times 5\sqrt{6}}{60}
Factor 150=5^{2}\times 6. Rewrite the square root of the product \sqrt{5^{2}\times 6} as the product of square roots \sqrt{5^{2}}\sqrt{6}. Take the square root of 5^{2}.
\frac{\sqrt{6}}{2}-\frac{45\sqrt{6}}{60}
Multiply 9 and 5 to get 45.
\frac{\sqrt{6}}{2}-\frac{3}{4}\sqrt{6}
Divide 45\sqrt{6} by 60 to get \frac{3}{4}\sqrt{6}.
-\frac{1}{4}\sqrt{6}
Combine \frac{\sqrt{6}}{2} and -\frac{3}{4}\sqrt{6} to get -\frac{1}{4}\sqrt{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}