Solve for b
b=2
Share
Copied to clipboard
\frac{\sqrt{6}\times 2}{\sqrt{3}}=\frac{b}{\frac{1}{2}\sqrt{2}}
Divide \sqrt{6} by \frac{\sqrt{3}}{2} by multiplying \sqrt{6} by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{\sqrt{6}\times 2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=\frac{b}{\frac{1}{2}\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{6}\times 2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{6}\times 2\sqrt{3}}{3}=\frac{b}{\frac{1}{2}\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\sqrt{2}\times 2\sqrt{3}}{3}=\frac{b}{\frac{1}{2}\sqrt{2}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\times 2\sqrt{2}}{3}=\frac{b}{\frac{1}{2}\sqrt{2}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
2\sqrt{2}=\frac{b}{\frac{1}{2}\sqrt{2}}
Cancel out 3 and 3.
2\sqrt{2}=\frac{b\sqrt{2}}{\frac{1}{2}\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{b}{\frac{1}{2}\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{2}=\frac{b\sqrt{2}}{\frac{1}{2}\times 2}
The square of \sqrt{2} is 2.
2\sqrt{2}=\frac{b\sqrt{2}}{1}
Cancel out 2 and 2.
2\sqrt{2}=b\sqrt{2}
Anything divided by one gives itself.
b\sqrt{2}=2\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}b=2\sqrt{2}
The equation is in standard form.
\frac{\sqrt{2}b}{\sqrt{2}}=\frac{2\sqrt{2}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
b=\frac{2\sqrt{2}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
b=2
Divide 2\sqrt{2} by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}