Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}-1}{2}-\frac{2}{\sqrt{5}+1}
Divide 1 by \frac{\sqrt{5}+1}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{5}+1}{2}.
\frac{\sqrt{5}-1}{2}-\frac{2\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}
Rationalize the denominator of \frac{2}{\sqrt{5}+1} by multiplying numerator and denominator by \sqrt{5}-1.
\frac{\sqrt{5}-1}{2}-\frac{2\left(\sqrt{5}-1\right)}{\left(\sqrt{5}\right)^{2}-1^{2}}
Consider \left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}-1}{2}-\frac{2\left(\sqrt{5}-1\right)}{5-1}
Square \sqrt{5}. Square 1.
\frac{\sqrt{5}-1}{2}-\frac{2\left(\sqrt{5}-1\right)}{4}
Subtract 1 from 5 to get 4.
\frac{\sqrt{5}-1}{2}-\frac{1}{2}\left(\sqrt{5}-1\right)
Divide 2\left(\sqrt{5}-1\right) by 4 to get \frac{1}{2}\left(\sqrt{5}-1\right).
\frac{\sqrt{5}-1}{2}-\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\left(-1\right)\right)
Use the distributive property to multiply \frac{1}{2} by \sqrt{5}-1.
\frac{\sqrt{5}-1}{2}-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)
Multiply \frac{1}{2} and -1 to get -\frac{1}{2}.
\frac{\sqrt{5}-1}{2}-\frac{1}{2}\sqrt{5}-\left(-\frac{1}{2}\right)
To find the opposite of \frac{1}{2}\sqrt{5}-\frac{1}{2}, find the opposite of each term.
\frac{\sqrt{5}-1}{2}-\frac{1}{2}\sqrt{5}+\frac{1}{2}
The opposite of -\frac{1}{2} is \frac{1}{2}.
\frac{\sqrt{5}-1+1}{2}-\frac{1}{2}\sqrt{5}
Since \frac{\sqrt{5}-1}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{\sqrt{5}}{2}-\frac{1}{2}\sqrt{5}
Do the calculations in \sqrt{5}-1+1.
0
Combine \frac{\sqrt{5}}{2} and -\frac{1}{2}\sqrt{5} to get 0.