Evaluate
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{3}\approx 0.13629391
Share
Copied to clipboard
\frac{\sqrt{5}+2}{\sqrt{3}}\times \frac{\sqrt{5}-2}{\sqrt{5}+2}
Subtract 2 from 5 to get 3.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{\sqrt{5}-2}{\sqrt{5}+2}
Rationalize the denominator of \frac{\sqrt{5}+2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\times \frac{\sqrt{5}-2}{\sqrt{5}+2}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\times \frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}
Rationalize the denominator of \frac{\sqrt{5}-2}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\times \frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\times \frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{5-4}
Square \sqrt{5}. Square 2.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\times \frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{1}
Subtract 4 from 5 to get 1.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)
Anything divided by one gives itself.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\left(\sqrt{5}-2\right)^{2}
Multiply \sqrt{5}-2 and \sqrt{5}-2 to get \left(\sqrt{5}-2\right)^{2}.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}\left(\sqrt{5}-2\right)^{2}}{3}
Express \frac{\left(\sqrt{5}+2\right)\sqrt{3}}{3}\left(\sqrt{5}-2\right)^{2} as a single fraction.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}\left(\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4\right)}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}\left(5-4\sqrt{5}+4\right)}{3}
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}+2\right)\sqrt{3}\left(9-4\sqrt{5}\right)}{3}
Add 5 and 4 to get 9.
\frac{\left(\sqrt{5}\sqrt{3}+2\sqrt{3}\right)\left(9-4\sqrt{5}\right)}{3}
Use the distributive property to multiply \sqrt{5}+2 by \sqrt{3}.
\frac{\left(\sqrt{15}+2\sqrt{3}\right)\left(9-4\sqrt{5}\right)}{3}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{9\sqrt{15}-4\sqrt{15}\sqrt{5}+18\sqrt{3}-8\sqrt{3}\sqrt{5}}{3}
Apply the distributive property by multiplying each term of \sqrt{15}+2\sqrt{3} by each term of 9-4\sqrt{5}.
\frac{9\sqrt{15}-4\sqrt{5}\sqrt{3}\sqrt{5}+18\sqrt{3}-8\sqrt{3}\sqrt{5}}{3}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{9\sqrt{15}-4\times 5\sqrt{3}+18\sqrt{3}-8\sqrt{3}\sqrt{5}}{3}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{9\sqrt{15}-20\sqrt{3}+18\sqrt{3}-8\sqrt{3}\sqrt{5}}{3}
Multiply -4 and 5 to get -20.
\frac{9\sqrt{15}-2\sqrt{3}-8\sqrt{3}\sqrt{5}}{3}
Combine -20\sqrt{3} and 18\sqrt{3} to get -2\sqrt{3}.
\frac{9\sqrt{15}-2\sqrt{3}-8\sqrt{15}}{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}-2\sqrt{3}}{3}
Combine 9\sqrt{15} and -8\sqrt{15} to get \sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}