Evaluate
-3\sqrt{2}\approx -4.242640687
Share
Copied to clipboard
\frac{\sqrt{30}\times \frac{3}{2}\sqrt{\frac{6+2}{3}}}{-2\sqrt{\frac{2\times 2+1}{2}}}
Multiply 2 and 3 to get 6.
\frac{\sqrt{30}\times \frac{3}{2}\sqrt{\frac{8}{3}}}{-2\sqrt{\frac{2\times 2+1}{2}}}
Add 6 and 2 to get 8.
\frac{\sqrt{30}\times \frac{3}{2}\times \frac{\sqrt{8}}{\sqrt{3}}}{-2\sqrt{\frac{2\times 2+1}{2}}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{2}}{\sqrt{3}}}{-2\sqrt{\frac{2\times 2+1}{2}}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{-2\sqrt{\frac{2\times 2+1}{2}}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{3}}{-2\sqrt{\frac{2\times 2+1}{2}}}
The square of \sqrt{3} is 3.
\frac{\sqrt{30}\times \frac{3}{2}\times \frac{2\sqrt{6}}{3}}{-2\sqrt{\frac{2\times 2+1}{2}}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\sqrt{\frac{2\times 2+1}{2}}}
Express \sqrt{30}\times \frac{2\sqrt{6}}{3} as a single fraction.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\sqrt{\frac{4+1}{2}}}
Multiply 2 and 2 to get 4.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\sqrt{\frac{5}{2}}}
Add 4 and 1 to get 5.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\times \frac{\sqrt{5}}{\sqrt{2}}}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\times \frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\times \frac{\sqrt{5}\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-2\times \frac{\sqrt{10}}{2}}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-\sqrt{10}}
Cancel out 2 and 2.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}\sqrt{10}}{-\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}}{-\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\frac{\sqrt{30}\times 2\sqrt{6}}{3}\times \frac{3}{2}\sqrt{10}}{-10}
The square of \sqrt{10} is 10.
\frac{\frac{\sqrt{6}\sqrt{5}\times 2\sqrt{6}}{3}\times \frac{3}{2}\sqrt{10}}{-10}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
\frac{\frac{6\times 2\sqrt{5}}{3}\times \frac{3}{2}\sqrt{10}}{-10}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{\frac{12\sqrt{5}}{3}\times \frac{3}{2}\sqrt{10}}{-10}
Multiply 6 and 2 to get 12.
\frac{4\sqrt{5}\times \frac{3}{2}\sqrt{10}}{-10}
Divide 12\sqrt{5} by 3 to get 4\sqrt{5}.
\frac{\frac{4\times 3}{2}\sqrt{5}\sqrt{10}}{-10}
Express 4\times \frac{3}{2} as a single fraction.
\frac{\frac{12}{2}\sqrt{5}\sqrt{10}}{-10}
Multiply 4 and 3 to get 12.
\frac{6\sqrt{5}\sqrt{10}}{-10}
Divide 12 by 2 to get 6.
\frac{6\sqrt{5}\sqrt{5}\sqrt{2}}{-10}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\frac{6\times 5\sqrt{2}}{-10}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{30\sqrt{2}}{-10}
Multiply 6 and 5 to get 30.
-3\sqrt{2}
Divide 30\sqrt{2} by -10 to get -3\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}