Skip to main content
Solve for x
Tick mark Image
Solve for h
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{3\left(x+h\right)^{2}+5}-\sqrt{3x^{2}+5}=0
Multiply both sides of the equation by h.
\sqrt{3\left(x^{2}+2xh+h^{2}\right)+5}-\sqrt{3x^{2}+5}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
\sqrt{3x^{2}+6xh+3h^{2}+5}-\sqrt{3x^{2}+5}=0
Use the distributive property to multiply 3 by x^{2}+2xh+h^{2}.
\sqrt{3x^{2}+6xh+3h^{2}+5}=\sqrt{3x^{2}+5}
Subtract -\sqrt{3x^{2}+5} from both sides of the equation.
\left(\sqrt{3x^{2}+6xh+3h^{2}+5}\right)^{2}=\left(\sqrt{3x^{2}+5}\right)^{2}
Square both sides of the equation.
3x^{2}+6xh+3h^{2}+5=\left(\sqrt{3x^{2}+5}\right)^{2}
Calculate \sqrt{3x^{2}+6xh+3h^{2}+5} to the power of 2 and get 3x^{2}+6xh+3h^{2}+5.
3x^{2}+6xh+3h^{2}+5=3x^{2}+5
Calculate \sqrt{3x^{2}+5} to the power of 2 and get 3x^{2}+5.
3x^{2}+6xh+3h^{2}+5-3x^{2}=5
Subtract 3x^{2} from both sides.
6xh+3h^{2}+5=5
Combine 3x^{2} and -3x^{2} to get 0.
6xh+5=5-3h^{2}
Subtract 3h^{2} from both sides.
6xh=5-3h^{2}-5
Subtract 5 from both sides.
6xh=-3h^{2}
Subtract 5 from 5 to get 0.
6hx=-3h^{2}
The equation is in standard form.
\frac{6hx}{6h}=-\frac{3h^{2}}{6h}
Divide both sides by 6h.
x=-\frac{3h^{2}}{6h}
Dividing by 6h undoes the multiplication by 6h.
x=-\frac{h}{2}
Divide -3h^{2} by 6h.
\frac{\sqrt{3\left(-\frac{h}{2}+h\right)^{2}+5}-\sqrt{3\left(-\frac{h}{2}\right)^{2}+5}}{h}=0
Substitute -\frac{h}{2} for x in the equation \frac{\sqrt{3\left(x+h\right)^{2}+5}-\sqrt{3x^{2}+5}}{h}=0.
0=0
Simplify. The value x=-\frac{h}{2} satisfies the equation.
x=-\frac{h}{2}
Equation \sqrt{3x^{2}+6hx+3h^{2}+5}=\sqrt{3x^{2}+5} has a unique solution.