Solve for x
x=-\frac{h}{2}
h\neq 0
Solve for h
h=-2x
x\neq 0
Graph
Share
Copied to clipboard
\sqrt{3\left(x+h\right)^{2}+5}-\sqrt{3x^{2}+5}=0
Multiply both sides of the equation by h.
\sqrt{3\left(x^{2}+2xh+h^{2}\right)+5}-\sqrt{3x^{2}+5}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
\sqrt{3x^{2}+6xh+3h^{2}+5}-\sqrt{3x^{2}+5}=0
Use the distributive property to multiply 3 by x^{2}+2xh+h^{2}.
\sqrt{3x^{2}+6xh+3h^{2}+5}=\sqrt{3x^{2}+5}
Subtract -\sqrt{3x^{2}+5} from both sides of the equation.
\left(\sqrt{3x^{2}+6xh+3h^{2}+5}\right)^{2}=\left(\sqrt{3x^{2}+5}\right)^{2}
Square both sides of the equation.
3x^{2}+6xh+3h^{2}+5=\left(\sqrt{3x^{2}+5}\right)^{2}
Calculate \sqrt{3x^{2}+6xh+3h^{2}+5} to the power of 2 and get 3x^{2}+6xh+3h^{2}+5.
3x^{2}+6xh+3h^{2}+5=3x^{2}+5
Calculate \sqrt{3x^{2}+5} to the power of 2 and get 3x^{2}+5.
3x^{2}+6xh+3h^{2}+5-3x^{2}=5
Subtract 3x^{2} from both sides.
6xh+3h^{2}+5=5
Combine 3x^{2} and -3x^{2} to get 0.
6xh+5=5-3h^{2}
Subtract 3h^{2} from both sides.
6xh=5-3h^{2}-5
Subtract 5 from both sides.
6xh=-3h^{2}
Subtract 5 from 5 to get 0.
6hx=-3h^{2}
The equation is in standard form.
\frac{6hx}{6h}=-\frac{3h^{2}}{6h}
Divide both sides by 6h.
x=-\frac{3h^{2}}{6h}
Dividing by 6h undoes the multiplication by 6h.
x=-\frac{h}{2}
Divide -3h^{2} by 6h.
\frac{\sqrt{3\left(-\frac{h}{2}+h\right)^{2}+5}-\sqrt{3\left(-\frac{h}{2}\right)^{2}+5}}{h}=0
Substitute -\frac{h}{2} for x in the equation \frac{\sqrt{3\left(x+h\right)^{2}+5}-\sqrt{3x^{2}+5}}{h}=0.
0=0
Simplify. The value x=-\frac{h}{2} satisfies the equation.
x=-\frac{h}{2}
Equation \sqrt{3x^{2}+6hx+3h^{2}+5}=\sqrt{3x^{2}+5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}